graphene layer
Recently Published Documents


TOTAL DOCUMENTS

501
(FIVE YEARS 144)

H-INDEX

44
(FIVE YEARS 8)

2022 ◽  
Vol 23 (1) ◽  
pp. 499
Author(s):  
Viritpon Srimaneepong ◽  
Hans Erling Skallevold ◽  
Zohaib Khurshid ◽  
Muhammad Sohail Zafar ◽  
Dinesh Rokaya ◽  
...  

Graphene is a versatile compound with several outstanding properties, providing a combination of impressive surface area, high strength, thermal and electrical properties, with a wide array of functionalization possibilities. This review aims to present an introduction of graphene and presents a comprehensive up-to-date review of graphene as an antimicrobial and coating application in medicine and dentistry. Available articles on graphene for biomedical applications were reviewed from January 1957 to August 2020) using MEDLINE/PubMed, Web of Science, and ScienceDirect. The selected articles were included in this study. Extensive research on graphene in several fields exists. However, the available literature on graphene-based coatings in dentistry and medical implant technology is limited. Graphene exhibits high biocompatibility, corrosion prevention, antimicrobial properties to prevent the colonization of bacteria. Graphene coatings enhance adhesion of cells, osteogenic differentiation, and promote antibacterial activity to parts of titanium unaffected by the thermal treatment. Furthermore, the graphene layer can improve the surface properties of implants which can be used for biomedical applications. Hence, graphene and its derivatives may hold the key for the next revolution in dental and medical technology.


2022 ◽  
Vol 517 ◽  
pp. 112066
Author(s):  
Xiaoqi Yan ◽  
Guanyi Zhang ◽  
Qingqing Zhu ◽  
Xiangjin Kong

Author(s):  
Дмитрий Петрович Бернацкий ◽  
Виктор Георгиевич Павлов

С помощью полевой десорбционной микроскопии исследована десорбция атомов цезия с квазисферической науглероженной поверхности монокристалла иридия. Получены полевые электронные и десорбционные изображения поверхности при образовании графена на грани (100) иридия. Полевые электронные изображения поверхности эмиттера до интеркалирования и после интеркалирования графена атомами цезия не изменяются. Электрическое поле стимулирует десорбцию атомов цезия из интеркалированного состояния, вследствие разрыва связей крайних атомов углерода с поверхностью грани (100) иридия. С помощью покадровой регистрации показана возможность наблюдения локализации дефектов графенового слоя на поверхности полевого эмиттера. Показано, что полевая десорбция атомов цезия из интеркалированного состояния начинается с дефектов графена расположенных по периметру островка графена. Обнаружено, что десорбционные центры могут располагаться не только по периметру графенового островка, но и в центральной его части в случае образования неупорядоченного графена. The desorption of caesium atoms from the quasi-spherical carbonized surface of an iridium single crystal was studied using the field desorption microscopy. Field electron and desorption images of the surface during the formation of graphene on the (100) iridium face are obtained. The field electron images of the emitter surface before intercalation and after intercalation of graphene with caesium atoms do not change. The electric field stimulates the desorption of caesium atoms from the intercalated state, due to the breaking of the bonds of the extreme carbon atoms with the surface of the face (100) of iridium. Using frame-by-frame recording, the possibility is shown of observing the localization of graphene layer defects on the surface of the field emitter. It is also shown that the field desorption of caesium atoms from the intercalated state begins with graphene defects located along the perimeter of the graphene island. It is found that desorption centers can be located not only along the perimeter of the graphene island, but also in its central part in the case of the disordered graphene formation.


2021 ◽  
Vol 60 (11) ◽  
Author(s):  
Babak Sakkaki ◽  
Hassan R. Saghai ◽  
Ghafar Darvish ◽  
Mehdi Khatir

2021 ◽  
Vol 11 (22) ◽  
pp. 10961
Author(s):  
Amir Maghoul ◽  
Ali Rostami ◽  
Azeez Abdullah Barzinjy ◽  
Peyman Mirtaheri

Graphene is a powerful 2-D matter with the capability of extraordinary transparency, and tunable conductivity is employed in emerging optoelectronics devices. In this article, the design of an electrically tunable graphene-based perfect terahertz absorber is proposed and evaluated numerically. The introduced structure is composed of two graphene layers with a sharp absorption peak in the terahertz band. These graphene layers are combline and stripline separated by the insulator substrate. The position of the absorption peak is tunable on the absorption band by means of manipulation in geometric parameters of the combline graphene layer. Furthermore, the intensity and frequency of the absorption peak can be flexibly modulated by varying Fermi potential of the combline graphene layer, which can be controlled through external DC voltages without the need of changing the geometry of the structure. It is shown that the absorption band can be tuned in the bandwidth from 5 to 15 in terahertz. The findings of this paper can promote a new perspective in designing perfect ribbon absorbers based on graphene properties that can be utilized for future photodetectors, solar cells, and thermal sensors with an absorption intensity above 2 × 105(nm2) with narrow absorption bandwidth of 0.112 THz.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2824
Author(s):  
Qiong Wang ◽  
Zhengbiao Ouyang ◽  
Mi Lin ◽  
Yaoxian Zheng

Graphene-based devices have important applications attributed to their superior performance and flexible tunability in practice. In this paper, a new kind of absorber with monolayer graphene sandwiched between two layers of dielectric rings is proposed. Two peaks with almost complete absorption are realized. The mechanism is that the double-layer dielectric rings added to both sides of the graphene layer are equivalent to resonators, whose double-side coupled-cavity effect can make the incident electromagnetic wave highly localized in the upper and lower surfaces of graphene layer simultaneously, leading to significant enhancement in the absorption of graphene. Furthermore, the influence of geometrical parameters on absorption performance is investigated in detail. Also, the device can be actively manipulated after fabrication through varying the chemical potential of graphene. As a result, the frequency shifts of the two absorption peaks can reach as large as 2.82 THz/eV and 3.83 THz/eV, respectively. Such a device could be used as tunable absorbers and other functional devices, such as multichannel filters, chemical/biochemical modulators and sensors.


2021 ◽  
pp. 1-9
Author(s):  
Brahmanandam Javvaji ◽  
Ramakrishna Vasireddi ◽  
Xiaoying Zhuang ◽  
Debiprosad Roy Mahapatra ◽  
Timon Rabczuk
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document