scholarly journals Transient electro-osmotic flow of generalized second-grade fluids under slip boundary conditions

2017 ◽  
Vol 95 (12) ◽  
pp. 1313-1320 ◽  
Author(s):  
Xiaoping Wang ◽  
Haitao Qi ◽  
Huanying Xu

This work investigates the transient slip flow of viscoelastic fluids in a slit micro-channel under the combined influences of electro-osmotic and pressure gradient forcings. We adopt the generalized second-grade fluid model with fractional derivative as the constitutive equation and the Navier linear slip model as the boundary conditions. The analytical solution for velocity distribution of the electro-osmotic flow is determined by employing the Debye–Hückel approximation and the integral transform methods. The corresponding expressions of classical Newtonian and second-grade fluids are obtained as the limiting cases of our general results. These solutions are presented as a sum of steady-state and transient parts. The combined effects of slip boundary conditions, fluid rheology, electro-osmotic, and pressure gradient forcings on the fluid velocity distribution are also discussed graphically in terms of the pertinent dimensionless parameters. By comparison with the two cases corresponding to the Newtonian fluid and the classical second-grade fluid, it is found that the fractional derivative parameter β has a significant effect on the fluid velocity distribution and the time when the fluid flow reaches the steady state. Additionally, the slip velocity at the wall increases in a noticeable manner the flow rate in an electro-osmotic flow.

2014 ◽  
Vol 69 (12) ◽  
pp. 697-704 ◽  
Author(s):  
Shaowei Wang ◽  
Moli Zhao ◽  
Xicheng Li ◽  
Xi Chen ◽  
Yanhui Ge

AbstractThe transient electro-osmotic flow of generalized second-grade fluid with fractional derivative in a narrow capillary tube is examined. With the help of the integral transform method, analytical expressions are derived for the electric potential and transient velocity profile by solving the linearized Poisson-Boltzmann equation and the Navier-Stokes equation. It was shown that the distribution and establishment of the velocity consists of two parts, the steady part and the unsteady one. The effects of retardation time, fractional derivative parameter, and the Debye-Hückel parameter on the generation of flow are shown graphically.


2019 ◽  
Vol 97 (5) ◽  
pp. 509-516 ◽  
Author(s):  
Aziz Ullah Awan ◽  
Muhammad Danial Hisham ◽  
Nauman Raza

This work aims to probe the slip flow of second-grade fluid. The impetus of the flow is taken to be the electro-osmosis and the pressure gradient. The flow is considered to be in a thin channel-like passage formed by two parallel plates. The potential difference existing between the surface of the solid and fluid is taken to be non-symmetric. The governing equations are formed for the second-grade fluid with the Caputo–Fabrizio fractional derivative. The Laplace transform is used for transforming the problem into space parameters after introducing the dimensionless variables. Instead of developing an analytical expression for inverse Laplacian, the numerical Stehfest algorithm is used. A tabular comparison of the obtained results by two different methods (Stehfest and Tzou) is given and the conformity of the two ensures the validity of our obtained results. The results are also pictured in terms of graphs and carry the information of the slip flow effect. Furthermore, the effect of the fractional parameter on velocity has also been tabulated using different values of fractional parameter.


2010 ◽  
Vol 15 (2) ◽  
pp. 155-158 ◽  
Author(s):  
C. Fetecau ◽  
A. U. Awan ◽  
M. Athar

In this brief note, we show that the unsteady flow of a generalized second grade fluid due to a constant couple, as well as the similar flow of Newtonian and ordinary second grade fluids, ultimately becomes steady. For this, a new form of the exact solution for velocity is established. This solution is presented as a sum of the steady and transient components. The required time to reach the steady-state is obtained by graphical illustrations.


Open Physics ◽  
2010 ◽  
Vol 8 (3) ◽  
Author(s):  
Bikash Sahoo

AbstractThe entrained flow of an electrically conducting non-Newtonian, viscoelastic second grade fluid due to an axisymmetric stretching surface with partial slip is considered. The partial slip is controlled by a dimensionless slip factor, which varies between zero (total adhesion) and infinity (full slip). Suitable similarity transformations are used to reduce the resulting highly nonlinear partial differential equation into an ordinary differential equation. The issue of paucity of boundary conditions is addressed, and an effective numerical scheme has been adopted to solve the obtained differential equation even without augmenting the boundary conditions. The important findings in this communication are the combined effects of the partial slip, magnetic interaction parameter and the second grade fluid parameter on the velocity and skin friction coefficient. It is observed that in presence of slip, the velocity decreases with an increase in the magnetic parameter. That is, the Lorentz force which opposes the flow leads to enhanced deceleration of the flow. Moreover, it is interesting to find that as slip increases in magnitude, permitting more fluid to slip past the sheet, the skin friction coefficient decreases in magnitude and approaches zero for higher values of the slip parameter, i.e., the fluid behaves as though it were inviscid.


Sign in / Sign up

Export Citation Format

Share Document