Estimating the effect of electron beam interactions with biological tissues

2018 ◽  
Vol 96 (12) ◽  
pp. 1338-1348
Author(s):  
Zeynep Yüksel ◽  
M. Çağatay Tufan

The stopping power and range for electrons in matter are the most important parameters in predicting the consequences of the electrons interacting with matter. In this work, we used our previously developed method to calculate these parameters. In our calculation method, the main parameter is the velocity-dependent electronic charge density of the target, which we obtained by using Roothaan–Hartree–Fock (RHF) wave functions. For range calculations, we used the continuous slowdown approach (CSDA), which neglects the energy-loss fluctuations so the incident particle loses its energy in a medium continuously at a rate equal to the total stopping power. The stopping power and CSDA range values have been calculated for electrons incident on brain, breast, and eye tissues. Obtained results have been compared with the available data.

1996 ◽  
Vol 52 (4) ◽  
pp. 586-595 ◽  
Author(s):  
A. Lichanot ◽  
P. Azavant ◽  
U. Pietsch

The electronic charge density of cubic boron nitride is calculated within the ab initio Hartree–Fock approximation using the program CRYSTAL. Based on Debye hypothesis, the thermal motion of atoms is considered by disturbing the atomic orbitals by mean-square displacements given from experiment. The calculated difference charge density obtained by subtraction of the total density and that of an independent atomic model (IAM) is characterized by a charge-density accumulation between next neighbours slightly shifted towards the nitrogen. The calculated X-ray structure amplitudes are compared with two different data sets [Josten (1985). Thesis. University of Bonn, Germany; Eichhorn, Kirfel, Grochowski & Serda (1991). Acta Cryst. B47, 843–848]. In both cases, very good agreement is found beyond the 420 reflection. The first six structure amplitudes are generally lower or larger compared with Josten's and Eichhorn et al.'s data, respectively. Whereas our charge density can be interpreted by a balanced ratio between covalent overlap and electronic charge transfer between neighbouring valence shells, the density plots calculated from experimental data express either the charge transfer (Josten, 1985) or the covalency (Eichorn et al., 1991).


Pteridines ◽  
1998 ◽  
Vol 9 (2) ◽  
pp. 85-90 ◽  
Author(s):  
Gilbert Reibnegger ◽  
Renate Horejsi ◽  
Karl Oettl ◽  
Walter Mlekusch

SummaryAb initio quantum chemical computations at the Hartree-Fock 6-31g** level of theory were performed on pterin, 7,8-dihydropterin and 5,6,7,8 -tetrahydropterin. The resulting electronic charge density functions and the electrostatic potential functions of the molecules are visualized by graphical software. The results demonstrate the profound changes in electronic properties among these structurally closely related compounds. Our contribution may serve as a basis for deeper insight into the molecular characteristics, also of other chemically or biologically important pterin derivatives of different oxidation state.


Author(s):  
E. G. Rightor ◽  
G. P. Young

Investigation of neat polymers by TEM is often thwarted by their sensitivity to the incident electron beam, which also limits the usefulness of chemical and spectroscopic information available by electron energy loss spectroscopy (EELS) for these materials. However, parallel-detection EELS systems allow reduced radiation damage, due to their far greater efficiency, thereby promoting their use to obtain this information for polymers. This is evident in qualitative identification of beam sensitive components in polymer blends and detailed investigations of near-edge features of homopolymers.Spectra were obtained for a poly(bisphenol-A carbonate) (BPAC) blend containing poly(tetrafluoroethylene) (PTFE) using a parallel-EELS and a serial-EELS (Gatan 666, 607) for comparison. A series of homopolymers was also examined using parallel-EELS on a JEOL 2000FX TEM employing a LaB6 filament at 100 kV. Pure homopolymers were obtained from Scientific Polymer Products. The PTFE sample was commercial grade. Polymers were microtomed on a Reichert-Jung Ultracut E and placed on holey carbon grids.


Author(s):  
David C. Joy ◽  
Suichu Luo ◽  
John R. Dunlap ◽  
Dick Williams ◽  
Siqi Cao

In Physics, Chemistry, Materials Science, Biology and Medicine, it is very important to have accurate information about the stopping power of various media for electrons, that is the average energy loss per unit pathlength due to inelastic Coulomb collisions with atomic electrons of the specimen along their trajectories. Techniques such as photoemission spectroscopy, Auger electron spectroscopy, and electron energy loss spectroscopy have been used in the measurements of electron-solid interaction. In this paper we present a comprehensive technique which combines experimental and theoretical work to determine the electron stopping power for various materials by electron energy loss spectroscopy (EELS ). As an example, we measured stopping power for Si, C, and their compound SiC. The method, results and discussion are described briefly as below.The stopping power calculation is based on the modified Bethe formula at low energy:where Neff and Ieff are the effective values of the mean ionization potential, and the number of electrons participating in the process respectively. Neff and Ieff can be obtained from the sum rule relations as we discussed before3 using the energy loss function Im(−1/ε).


Author(s):  
A. Buczkowski ◽  
Z. J. Radzimski ◽  
J. C. Russ ◽  
G. A. Rozgonyi

If a thickness of a semiconductor is smaller than the penetration depth of the electron beam, e.g. in silicon on insulator (SOI) structures, only a small portion of incident electrons energy , which is lost in a superficial silicon layer separated by the oxide from the substrate, contributes to the electron beam induced current (EBIC). Because the energy loss distribution of primary beam is not uniform and varies with beam energy, it is not straightforward to predict the optimum conditions for using this technique. Moreover, the energy losses in an ohmic or Schottky contact complicate this prediction. None of the existing theories, which are based on an assumption of a point-like region of electron beam generation, can be used satisfactorily on SOI structures. We have used a Monte Carlo technique which provide a simulation of the electron beam interactions with thin multilayer structures. The EBIC current was calculated using a simple one dimensional geometry, i.e. depletion layer separating electron- hole pairs spreads out to infinity in x- and y-direction. A point-type generation function with location being an actual location of an incident electron energy loss event has been assumed. A collection efficiency of electron-hole pairs was assumed to be 100% for carriers generated within the depletion layer, and inversely proportional to the exponential function of depth with the effective diffusion length as a parameter outside this layer. A series of simulations were performed for various thicknesses of superficial silicon layer. The geometries used for simulations were chosen to match the "real" samples used in the experimental part of this work. The theoretical data presented in Fig. 1 show how significandy the gain decreases with a decrease in superficial layer thickness in comparison with bulk material. Moreover, there is an optimum beam energy at which the gain reaches its maximum value for particular silicon thickness.


Sign in / Sign up

Export Citation Format

Share Document