Modified field equations from a complexified nonlocal metric

2019 ◽  
Vol 97 (8) ◽  
pp. 816-827
Author(s):  
Rami Ahmad El-Nabulsi

We argue that it is possible to obtain higher-derivative Einstein’s field equations by means of an extended complexified backward–forward nonlocal extension of the space–time metric, which depends on space–time vectors. Our approach generalizes the notion of the covariant derivative along tangent vectors of a given manifold, and accordingly many of the differential geometrical operators and symbols used in general relativity. Equations of motion are derived and a nonlocal complexified general relativity theory is formulated. A number of illustrations are proposed and discussed accordingly.

1949 ◽  
Vol 1 (3) ◽  
pp. 209-241 ◽  
Author(s):  
A. Einstein ◽  
L. Infeld

The gravitational field manifests itself in the motion of bodies. Therefore the problem of determining the motion of such bodies from the field equations alone is of fundamental importance. This problem was solved for the first time some ten years ago and the equations of motion for two particles were then deduced [1]. A more general and simplified version of this problem was given shortly thereafter [2].Mr. Lewison pointed out to us, that from our approximation procedure, it does not follow that the field equations can be solved up to an arbitrarily high approximation. This is indeed true.


1953 ◽  
Vol 5 ◽  
pp. 17-25 ◽  
Author(s):  
L. Infeld

The problem of the field equations and the equations of motion in general relativity theory is now sufficiently clarified. The equations of motion can be deduced from pure field equations by treating matter as singularities, [2; 3], or from field equations with the energy momentum tensor [4]. Recently two papers appeared in which the problem of the coordinate system was considered [5; 8]. The two papers are in general agreement as far as the role of the coordinate system is concerned. Yet there are some differences which require clarification.


1951 ◽  
Vol 3 ◽  
pp. 195-207 ◽  
Author(s):  
L. Infeld ◽  
A. E. Scheidegger

Among the classical field theories, general relativity theory occupies a somewhat peculiar place. Unlike those of most other field theories, the field equations in relativity theory are non-linear. This implies that many facts, well known in linear theories, have no analogues in general relativity theory, and conversely. The equations of motion of the sources of the gravitational field are contained in the field equations, a fact which does not apply for the motion of an electron in the electromagnetic field. Conversely, it is difficult to define the notion of a wave (familiar in electrodynamics) in relativity theory; for, the linear principle of superposition is crucial for the existence of waves (at least in the sense that the notion of a wave is normally used).


This note is intended to give a rough survey of the results obtained in the study of twist-free pure radiation fields in general relativity theory. Here we are using the following Definition. A space-time ( V 4 of signature +2) is called a pure radiation field if it contains a distortion-free geodetic null congruence (a so-called ray congruence ), and if it satisfies certain field equations which we will specify below (e.g. Einstein’s vacuum-field equations). A (null) congruence is called twist-free if it is hypersurface-orthogonal (or ‘normal’). The results listed below were obtained by introducing special (‘canonical’) co-ordinates adapted to the ray congruence. Detailed proofs were given by Robinson & Trautman (1962) and by Jordan, Kundt & Ehlers (1961) (see also Kundt 1961). For the sake of completeness we include in our survey the subclass of expanding fields, and make use of some formulae first obtained by Robinson & Trautman.


1971 ◽  
Vol 69 (2) ◽  
pp. 295-296 ◽  
Author(s):  
J. Wolfgang Smith

It has often been assumed in cosmology theory(1) that there exists an average density of matter in space which is everywhere greater than zero. Under this assumption the space-time M will be foliated by curves each of which represents the life history of a particle. In keeping with the postulates of general relativity theory we shall refer to these curves as geodesics. Letting X denote the space of particles one obtains a projection f: M → X which assigns to every P ∈ M the particle found at P. Conversely, given the projection f:M → X, one can recover the geodesics: they are precisely the fibres f−1(x), x∈X.


Author(s):  
Jae-Kwang Hwang

Three-dimensional quantized space model is newly introduced. Quantum mechanics and relativity theory are explained in terms of the warped three-dimensional quantized spaces with the quantum time width (Dt=tq). The energy is newly defined as the 4-dimensional space-time volume of E = cDtDV in the present work. It is shown that the wave function of the quantum mechanics is closely related to the warped quantized space shape with the space time-volume. The quantum entanglement and quantum wave function collapse are explained additionally. The special relativity theory is separated into the energy transition associated with the space-time shape transition of the matter and the momentum transition associated with the space-time location transition. Then, the quantum mechanics and the general relativity theory are about the 4-dimensional space-time volume and the 4-dimensional space-time distance, respectively.


2021 ◽  
Author(s):  
Sangwha Yi

We find Einstein’s notational equation of the electro-magnetic field equation and the electromagneticfield in Rindler space-time. Because, electromagnetic fields of the accelerated frame include in general relativity theory.


Sign in / Sign up

Export Citation Format

Share Document