scholarly journals Reticulon 3 regulates very low density lipoprotein secretion by controlling very low density lipoprotein transport vesicle biogenesis

2018 ◽  
Vol 96 (7) ◽  
pp. 668-675 ◽  
Author(s):  
Shaila Siddiqi ◽  
Olga Zhelyabovska ◽  
Shadab A. Siddiqi

Secretion of very low density lipoprotein (VLDL) by the liver is an important physiological process; however, the rate of VLDL secretion is determined by its transport from the endoplasmic reticulum (ER) to the Golgi. This transport event is facilitated by a specialized ER-derived vesicle, the VLDL transport vesicle (VTV). We have reported earlier a detailed VTV proteome, which revealed that reticulon 3 (RTN3) is uniquely present in the VTV. Our immunoblotting and electron microscopic data demonstrate that RTN3 is enriched in the VTV; however, other ER-derived vesicles do not contain RTN3. Co-immunoprecipitation data coupled with confocal microscopic analyses strongly suggest that RTN3 interacts with VLDL core protein, apoB100, at the ER level. Our data show that either blocking of RTN3 using specific antibodies or RTN3 knockdown resulted in significant reduction in VTV biogenesis from hepatic ER membranes. Additionally, VLDL secretion from hepatocytes was significantly decreased when RTN3 was silenced by RTN3 siRNA. We conclude that RTN3 regulates VLDL secretion by controlling VTV-mediated ER-to-Golgi transport of nascent VLDL.

1992 ◽  
Vol 284 (2) ◽  
pp. 457-462 ◽  
Author(s):  
D Wiggins ◽  
G F Gibbons

In hepatocyte cultures maintained in the absence of extracellular fatty acids, at least 70% of the secreted very-low-density lipoprotein (VLDL) triacylglycerol was derived via lipolysis of intracellular triacylglycerol. This proportion was unchanged when the cells were exposed for 24 h to insulin or glucagon, hormones which decreased the overall secretion of intracellular triacylglycerol, or to chloroquine or tolbutamide, agents which inhibit lysosomal lipolysis. The rate of intracellular lipolysis was 2-3-fold greater than that required to maintain the observed rate of triacylglycerol secretion. Most of the fatty acids released were returned to the intracellular pool. Neither insulin nor glucagon had any significant effect on the overall lipolysis and re-esterification of intracellular triacylglycerol. In these cases a greater proportion of the released fatty acids re-entered the cellular pool, rather than being recruited for VLDL assembly. Tolbutamide inhibited intracellular lipolysis, but suppressed VLDL secretion to a greater extent. 3,5-Dimethylpyrazole did not affect lipolysis or VLDL secretion. The increased secretion of VLDL triacylglycerol observed after exposure of cells to insulin for 3 days was not accompanied by an increased rate of intracellular lipolysis. However, a larger proportion of the triacylglycerol secreted under these conditions may not have undergone prior lipolysis.


1989 ◽  
Vol 263 (3) ◽  
pp. 937-943 ◽  
Author(s):  
J M Duerden ◽  
S M Bartlett ◽  
G F Gibbons

High rates of hepatic cellular triacylglycerol synthesis and very-low-density-lipoprotein (VLDL) triacylglycerol output were maintained in vitro for at least 3 days when hepatocytes were cultured in a medium lacking insulin but supplemented with 1 microM-dexamethasone, 10 mM-lactate, 1 mM-pyruvate and 0.75 mM-oleate (supplemented medium). Under these conditions VLDL output remained constant, whereas cell triacyglycerol content increased 10-fold over 3 days, suggesting that the secretory process was saturated. Insulin, present during the first 24 h period, enhanced the storage of cellular triacylglycerol by inhibiting the secretion of VLDL. This stored triacyglycerol was subsequently released into the medium as VLDL if insulin was removed. With the supplemented medium the increased rate of VLDL secretion after insulin removal exceeded that observed under ‘saturating’ conditions, suggesting that pre-treatment with insulin enhanced the capacity for VLDL secretion. In contrast with the short-term (24 h) effects of insulin, longer-term exposure (greater than 48 h) to insulin enhanced the secretion of VLDL compared with insulin-untreated cultures. Under these conditions, insulin increased the net rates of triacylglycerol synthesis. The results suggest that insulin affects the secretion of VLDL triacylglycerol by two distinct and opposing mechanisms: first, by direct inhibition of secretion; second by increasing triacylglycerol synthesis, which stimulates secretion. The net effect at any time depends upon the relative importance of each of these processes.


1998 ◽  
Vol 332 (3) ◽  
pp. 667-672 ◽  
Author(s):  
Andrew M. SALTER ◽  
David WIGGINS ◽  
Victoria A. SESSIONS ◽  
Geoffrey F. GIBBONS

Hamster hepatocytes, like human hepatocytes, secrete triacylglycerol (TAG) as very-low-density lipoprotein (VLDL) in association with apolipoprotein (apo) B100, whereas in the rat, TAG is secreted predominantly in association with apoB48. Nevertheless, in hepatocytes from both species, a minimum of between 60% and 70% [69.1±1.4% (hamster), 60.6±2.5% (rat)] of the VLDL TAG was secreted following lipolysis and re-esterification of intracellular TAG. The fractional rates of hepatocellular TAG turnover (lipolysis and re-esterification) were similar in both species [1.83±0.28 pools/24 h (hamster), 1.39±0.23 pools/24 h (rat)]. Comparison of the relative changes in the 3H and 14C specific radioactivities of the VLDL and cellular TAG, pre-labelled with [3H]glycerol and [4C]oleate, suggested that fatty acids released by lipolysis either were recruited directly into a VLDL assembly pool or were recycled to the cellular pool following re-esterification. Recycling in the hamster was somewhat greater than in the rat (66.1±5.7% versus 53.7±4.8% of TAG lipolysed respectively). Similarly, a larger proportion of newly synthesized TAG was retained within the cell, rather than secreted as VLDL, in the hamster compared with the rat (37.9±2.8% versus 20±3.8%, P< 0.01). These factors may have contributed to the somewhat lower rate of VLDL TAG secretion in the hamster hepatocytes compared with those from the rat (43.3±4.2 versus 96.4±3.4 µg/24 h per mg of cell protein). Rat hepatocytes were more sensitive to inhibition of VLDL secretion by insulin than were those from hamster. In neither case did insulin affect total or fractional TAG turnover. The results suggest that assembly of both apoB100 VLDL and apoB48 VLDL is associated with efficient intracellular TAG lipolysis.


1980 ◽  
Vol 84 (1) ◽  
pp. 28-39 ◽  
Author(s):  
E P Reaven ◽  
G M Reaven

To determine whether a minimum number of assembled microtubules is required for very low density lipoprotein (VLDL) triglyceride TG) secretion in hepatocytes, antimicrotubule drugs of different concentrations were given to rats. Hepatic VLDL-TG release was subsequently measured by a liver perfusion system, and hepatocyte ultrastructural changes were analyzed by quantitative ultrastructural methods. The results demonstrate a tight coupling between the reduction in hepatocyte microtubule content and the reduction in hepatic VLDL-TG secretion which is related to the dose of colchicine or vinblastine administered. The various estimates imply that a minimum number of microtubules is necessary for hepatic VLDL secretion to proceed normally and that hepatic VLDL secretion rates reach their nadir (10--30% of control) when microtubules comprise less than 0.005% of the cytoplasm (or less than 10% of control values) when microtubules comprise less than 0.005% of the cytoplasm (or less than 10% of control values). At this point, hepatocyte Golgi complexes are also greatly altered; Golgi complexes with recognizable dictyosomal membranes are reduced to 15% of control values and the region is filled with large numbers of electron-dense bodies which appear to be lysosomes in the process of digesting VLDL. There is a predilection for the remaining Golgi complexes to be associated with a few segments of microtubules, even when no microtubules can be measured in random samplings of hepatocytes. Clusters of vacuoles containing VLDL are also present throughout the cytoplasm; the limiting membranes of 25% of these vacuoles are studded with ribosomes. These findings demonstrate that the administration of antimicrotubule agents results in decreases in hepatic VLDL-TG secretion which are associated with loss of microtubules and alteration of existing Golgi complexes.


2003 ◽  
Vol 228 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Kathleen M. Botham ◽  
Xiaozhong Zheng ◽  
Mariarosaria Napolitano ◽  
Michael Avella ◽  
Claudio Cavallari ◽  
...  

The influence of chylomicron remnants enriched in n-3 or n-6 polyunsaturated fatty acids (PUFA) (derived from fish or corn oil, respectively) on the expression of mRNA for four genes Involved in the regulation of the synthesis, assembly, and secretion of very-low-density lipoprotein (VLDL) in the liver was investigated in normal rat hepatocytes and after manipulation of the cellular oxidative state by incubation with N-acetyl cysteine (NAC) or CuSO4. The four genes investigated were those encoding apolipoprotein B (apoB), the microsomal triacylglycerol transfer protein (MTP), and the enzymes acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:cholesterol acyltransferase 2 (ACAT2), which play a role in the regulation of triacylglycerol and cholesteryl ester synthesis, respectively. mRNA levels for apoB, MTP, and DGAT were unaffected by either fish or corn oil chylomicron remnants, but the amount of ACAT2 mRNA was significantly reduced after Incubation of the hepatocytes with fish oil remnants as compared with corn oil remnants or without remnants. These findings indicate that the delivery of dietary n-3 PUFA to hepatocytes in chylomicron remnants downregulates the expression of mRNA for ACAT2, and this may play a role in their inhibition of VLDL secretion. However, when the cells were shifted into a prooxidizing or pro-reducing state by pretreatment with CuSO4 (1 mM) or NAC (5 mM) for 24 hr, levels of mRNA for MTP were increased by about 2- or 4-fold, respectively, by fish oil remnants, whereas corn oil remnants had no significant effect. Fish oil remnants also caused a smaller increase in apoB mRNA in comparison with com oil remnants in NAC-treated cells (+38%). These changes would be expected to lead to increased VLDL secretion rather than the decrease associated with dietary n-3 PUFA in normal conditions. These findings suggest that relatively minor changes in cellular redox levels can have a major influence on important liver functions such as VLDL synthesis and secretion.


Sign in / Sign up

Export Citation Format

Share Document