transport vesicle
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 9)

H-INDEX

40
(FIVE YEARS 2)

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2460
Author(s):  
Snježana Mikuličić ◽  
Johannes Strunk ◽  
Luise Florin

During initial infection, human papillomaviruses (HPV) take an unusual trafficking pathway through their host cell. It begins with a long period on the cell surface, during which the capsid is primed and a virus entry platform is formed. A specific type of clathrin-independent endocytosis and subsequent retrograde trafficking to the trans-Golgi network follow this. Cellular reorganization processes, which take place during mitosis, enable further virus transport and the establishment of infection while evading intrinsic cellular immune defenses. First, the fragmentation of the Golgi allows the release of membrane-encased virions, which are partially protected from cytoplasmic restriction factors. Second, the nuclear envelope breakdown opens the gate for these virus–vesicles to the cell nucleus. Third, the dis- and re-assembly of the PML nuclear bodies leads to the formation of modified virus-associated PML subnuclear structures, enabling viral transcription and replication. While remnants of the major capsid protein L1 and the viral DNA remain in a transport vesicle, the viral capsid protein L2 plays a crucial role during virus entry, as it adopts a membrane-spanning conformation for interaction with various cellular proteins to establish a successful infection. In this review, we follow the oncogenic HPV type 16 during its long journey into the nucleus, and contrast pro- and antiviral processes.


2021 ◽  
Author(s):  
Josep Vilarrasa-Blasi ◽  
Tamara Vellosillo ◽  
Robert E. Jinkerson ◽  
Friedrich Fauser ◽  
Tingting Xiang ◽  
...  

Maintenance of water homeostasis is a fundamental cellular process required by all living organisms. Here, we use the green alga Chlamydomonas reinhardtii to establish a foundational understanding of evolutionarily conserved osmotic-stress signaling pathways in the green lineage through transcriptomics, phosphoproteomics, and functional genomics approaches. Five genes acting across diverse cellular pathways were found to be essential for osmotic-stress tolerance in Chlamydomonas including cytoskeletal organization, potassium transport, vesicle trafficking, mitogen-activated protein kinase and chloroplast signaling. We show that homologs of these genes in the multicellular land plant Arabidopsis thaliana have conserved functional roles in stress tolerance and reveal a novel PROFILIN-dependent actin remodeling stage of acclimation that ensures cell survival and tissue integrity upon osmotic stress. This study highlights the conservation of the stress response in algae and land plants and establishes Chlamydomonas as a unicellular plant model system to dissect the osmotic stress signaling pathway.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sung-Eun Nam ◽  
Yiu Wing Sunny Cheung ◽  
Thanh Ngoc Nguyen ◽  
Michael Gong ◽  
Samuel Chan ◽  
...  

AbstractPivotal to the maintenance of cellular homeostasis, macroautophagy (hereafter autophagy) is an evolutionarily conserved degradation system that involves sequestration of cytoplasmic material into the double-membrane autophagosome and targeting of this transport vesicle to the lysosome/late endosome for degradation. EPG5 is a large-sized metazoan protein proposed to serve as a tethering factor to enforce autophagosome–lysosome/late endosome fusion specificity, and its deficiency causes a severe multisystem disorder known as Vici syndrome. Here, we show that human EPG5 (hEPG5) adopts an extended “shepherd’s staff” architecture. We find that hEPG5 binds preferentially to members of the GABARAP subfamily of human ATG8 proteins critical to autophagosome–lysosome fusion. The hEPG5–GABARAPs interaction, which is mediated by tandem LIR motifs that exhibit differential affinities, is required for hEPG5 recruitment to mitochondria during PINK1/Parkin-dependent mitophagy. Lastly, we find that the Vici syndrome mutation Gln336Arg does not affect the hEPG5’s overall stability nor its ability to engage in interaction with the GABARAPs. Collectively, results from our studies reveal new insights into how hEPG5 recognizes mature autophagosome and establish a platform for examining the molecular effects of Vici syndrome disease mutations on hEPG5.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10788
Author(s):  
Guanghao Wang ◽  
Deyu Long ◽  
Fagang Yu ◽  
Hong Zhang ◽  
Chunhuan Chen ◽  
...  

SNARE proteins mediate eukaryotic cell membrane/transport vesicle fusion and act in plant resistance to fungi. Herein, 173 SNARE proteins were identified in wheat and divided into 5 subfamilies and 21 classes. The number of the SYP1 class type was largest in TaSNAREs. Phylogenetic tree analysis revealed that most of the SNAREs were distributed in 21 classes. Analysis of the genetic structure revealed large differences among the 21 classes, and the structures in the same group were similar, except across individual genes. Excluding the first homoeologous group, the number in the other homoeologous groups was similar. The 2,000 bp promoter region of the TaSNARE genes were analyzed, and many W-box, MYB and disease-related cis-acting elements were identified. The qRT-PCR-based analysis of the SNARE genes revealed similar expression patterns of the same subfamily in one wheat variety. The expression patterns of the same gene in resistant/sensitive varieties largely differed at 6 h after infection, suggesting that SNARE proteins play an important role in early pathogen infection. Here, the identification and expression analysis of SNARE proteins provide a theoretical basis for studies of SNARE protein function and wheat resistance to powdery mildew.


2020 ◽  
Author(s):  
Gabrielle Larocque ◽  
Penelope J. La-Borde ◽  
Beverley J. Wilson ◽  
Nicholas I. Clarke ◽  
Daniel J. Moore ◽  
...  

Membrane traffic is an important regulator of cell migration through the endocytosis and recycling of cell surface receptors such as integrin heterodimers. Intracellular nanovesicles (INVs), are a recently identified class of transport vesicle that are involved in multiple membrane trafficking steps including the recycling pathway. The only known marker for INVs is Tumor Protein D54 (TPD54/TPD52L2), a member of the TPD52-like protein family. Overexpression of TPD52-like family proteins in cancer has been linked to poor prognosis and an aggressive metastatic phenotype which suggests cell migration may be altered under these conditions. Here we show that TPD54 associates with INVs by directly binding high curvature membrane via a conserved positively charged motif in its C-terminus. We describe how other members of the TPD52-like family are also associated with INVs and we document the Rab GTPase complement of all INVs. Depletion of TPD52-like proteins inhibits cell migration and invasion; and we show that this is likely due to altered integrin recycling. Our study highlights the involvement of INVs in the trafficking of cell surface proteins to generate biologically important outputs in health and disease.


2020 ◽  
Vol 71 (1) ◽  
pp. 247-272
Author(s):  
Erik Nielsen

Small GTP-binding proteins represent a highly conserved signaling module in eukaryotes that regulates diverse cellular processes such as signal transduction, cytoskeletal organization and cell polarity, cell proliferation and differentiation, intracellular membrane trafficking and transport vesicle formation, and nucleocytoplasmic transport. These proteins function as molecular switches that cycle between active and inactive states, and this cycle is linked to GTP binding and hydrolysis. In this review, the roles of the plant complement of small GTP-binding proteins in these cellular processes are described, as well as accessory proteins that control their activity, and current understanding of the functions of individual members of these families in plants—with a focus on the model organism Arabidopsis—is presented. Some potential novel roles of these GTPases in plants, relative to their established roles in yeast and/or animal systems, are also discussed.


2019 ◽  
Vol 219 (1) ◽  
Author(s):  
Gabrielle Larocque ◽  
Penelope J. La-Borde ◽  
Nicholas I. Clarke ◽  
Nicholas J. Carter ◽  
Stephen J. Royle

Transport of proteins and lipids from one membrane compartment to another is via intracellular vesicles. We investigated the function of tumor protein D54 (TPD54/TPD52L2) and found that TPD54 was involved in multiple membrane trafficking pathways: anterograde traffic, recycling, and Golgi integrity. To understand how TPD54 controls these diverse functions, we used an inducible method to reroute TPD54 to mitochondria. Surprisingly, this manipulation resulted in the capture of many small vesicles (30 nm diameter) at the mitochondrial surface. Super-resolution imaging confirmed the presence of similarly sized TPD54-positive structures under normal conditions. It appears that TPD54 defines a new class of transport vesicle, which we term intracellular nanovesicles (INVs). INVs meet three criteria for functionality. They contain specific cargo, they have certain R-SNAREs for fusion, and they are endowed with a variety of Rab GTPases (16 out of 43 tested). The molecular heterogeneity of INVs and the diverse functions of TPD54 suggest that INVs have various membrane origins and a number of destinations. We propose that INVs are a generic class of transport vesicle that transfer cargo between these varied locations.


2019 ◽  
Vol 93 (15) ◽  
Author(s):  
Patricia M. Day ◽  
Andrea S. Weisberg ◽  
Cynthia D. Thompson ◽  
Michelle M. Hughes ◽  
Yuk Ying Pang ◽  
...  

ABSTRACTInfectious human papillomavirus 16 (HPV16) L1/L2 pseudovirions were found to remain largely intact during vesicular transport to the nucleus. By electron microscopy, capsids with a diameter of 50 nm were clearly visible within small vesicles attached to mitotic chromosomes and to a lesser extent within interphase nuclei, implying nuclear disassembly. By confocal analysis, it was determined that nuclear entry of assembled L1 is dependent upon the presence of the minor capsid protein, L2, but independent of encapsidated DNA. We also demonstrate that L1 nuclear localization and mitotic chromosome association can occurin vivoin the murine cervicovaginal challenge model of HPV16 infection. These findings challenge the prevailing concepts of PV uncoating and disassembly. More generally, they document that a largely intact viral capsid can enter the nucleus within a transport vesicle, establishing a novel mechanism by which a virus accesses the nuclear cellular machinery.IMPORTANCEPapillomaviruses (PVs) comprise a large family of nonenveloped DNA viruses that include HPV16, among other oncogenic types, the causative agents of cervical cancer. Delivery of the viral DNA into the host cell nucleus is necessary for establishment of infection. This was thought to occur via a subviral complex following uncoating of the larger viral capsid. In this study, we demonstrate that little disassembly of the PV capsid occurs prior to nuclear delivery. These surprising data reveal a previously unrecognized viral strategy to access the nuclear replication machinery. Understanding viral entry mechanisms not only increases our appreciation of basic cell biological pathways but also may lead to more effective antiviral interventions.


2018 ◽  
Author(s):  
Gabrielle Larocque ◽  
Penelope J. La-Borde ◽  
Nicholas I. Clarke ◽  
Nicholas J. Carter ◽  
Stephen J. Royle

Transport of proteins and lipids from one membrane compartment to another is via intracellular vesicles. We investigated the function of Tumor Protein D54 (TPD54/TPD52L2), and found that TPD54 was involved in multiple membrane trafficking pathways: anterograde traffic, recycling and Golgi integrity. To understand how TPD54 controls these diverse functions, we used an inducible method to reroute TPD54 to mitochondria. Surprisingly, this manipulation resulted in the capture of many small vesicles (30 nm diameter) at the mitochondrial surface. Super-resolution imaging confirmed the presence of similarly sized TPD54-positive structures under normal conditions. It appears that TPD54 defines a new class of transport vesicle, which we term intracellular nanovesicles (INVs). INVs meet three criteria for functionality. They contain specific cargo, they have certain R-SNAREs for fusion, and they are endowed with a variety of Rab GTPases (16 out of 43 tested). The molecular heterogeneity of INVs and the diverse functions of TPD54 suggest that INVs have various membrane origins and a number of destinations. We propose that INVs are a generic class of transport vesicle which transfer cargo between these varied locations.


Sign in / Sign up

Export Citation Format

Share Document