Knockdown of bone morphogenetic protein type II receptor leads to decreased aquaporin 1 expression and function in human pulmonary microvascular endothelial cells

2020 ◽  
Vol 98 (11) ◽  
pp. 834-839
Author(s):  
Alice G. Vassiliou ◽  
Chrysi Keskinidou ◽  
Anastasia Kotanidou ◽  
Frantzeska Frantzeskaki ◽  
Ioanna Dimopoulou ◽  
...  

Bone morphogenetic proteins (BMPs) were once considered only to have a role in bone formation. It is now known that they have pivotal roles in other organ diseases, including heritable pulmonary arterial hypertension (PAH), where genetic mutations in the type II BMP receptor (BMPR2) are the commonest cause of receptor dysfunction. However, it has also recently been demonstrated that aquaporin 1 (Aqp1) dysfunction may contribute to PAH, highlighting that PAH development may involve more than one pathogenic pathway. Whether reduction in BMPR2 affects Aqp1 is unknown. We therefore studied Aqp1 in BMPR2-silenced human pulmonary microvascular endothelial cells (HPMECs). We demonstrated reduced Aqp1 mRNA, protein, and function in the BMPR2-silenced cells. Additionally, BMPR2-silenced cells exhibited lower expression of BMP-signaling molecules. In conclusion, decreased BMPR2 appears to affect Aqp1 at the mRNA, protein, and functional levels. This observation may identify a contributory mechanism for PAH.

2007 ◽  
Vol 292 (3) ◽  
pp. L671-L677 ◽  
Author(s):  
Victor Solodushko ◽  
Brian Fouty

Endothelial cells perform a number of important functions including release of vasodilators, control of the coagulation cascade, and restriction of solutes and fluid from the extravascular space. Regulation of fluid balance is of particular importance in the microcirculation of the lung where the loss of endothelial barrier function can lead to alveolar flooding and life-threatening hypoxemia. Significant heterogeneity exists between endothelial cells lining the microcirculation and cells from larger pulmonary arteries, however, and these differences may be relevant in restoring barrier function following vascular injury. Using well-defined populations of rat endothelial cells harvested from the pulmonary microcirculation [pulmonary microvascular endothelial cells (PMVEC)] and from larger pulmonary arteries [pulmonary artery endothelial cells (PAEC)], we compared their growth characteristics in low serum conditions. Withdrawal of serum inhibited proliferation and induced G0/G1 arrest in PAEC, whereas PMVEC failed to undergo G0/G1 arrest and continued to proliferate. Consistent with this observation, PMVEC had an increased cdk4 and cdk2 kinase activity with hyperphosphorylated (inactive) retinoblastoma (Rb) relative to PAEC as well as a threefold increase in cyclin D1 protein levels; overexpression of the cdk inhibitors p21Cip1/Waf1 and p27Kip1 induced G0/G1 arrest. While serum withdrawal failed to induce G0/G1 arrest in nonconfluent PMVEC, confluence was associated with hypophosphorylated Rb and growth arrest; loss of confluence led to resumption of growth. These data suggest that nonconfluent PMVEC continue to proliferate independently of growth factors. This proliferative characteristic may be important in restoring confluence (and barrier function) in the pulmonary microcirculation following endothelial injury.


Sign in / Sign up

Export Citation Format

Share Document