U–Pb zircon geochronology of eclogites from the Scandian Orogen, northern Western Gneiss Region, Norway: 14–20 million years between eclogite crystallization and return to amphibolite-facies conditionsThis article is one of a series of papers published in this Special Issue on the theme of Geochronology in honour of Tom Krogh.

2011 ◽  
Vol 48 (2) ◽  
pp. 441-472 ◽  
Author(s):  
Thomas E. Krogh ◽  
Sandra L. Kamo ◽  
Peter Robinson ◽  
Michael P. Terry ◽  
Kim Kwok

Reconstructing tectonic histories involving continental collision, subduction, and exhumation at plate-tectonic rates of ∼1 cm/year, requires precise U–Pb zircon geochronology. The Western Gneiss Region has exceptional exposures of high-pressure (HP) and ultra-high-pressure (UHP) rocks. The strategy adopted here involved sampling eclogite and associated late unstrained pegmatites to acquire the time of eclogite crystallization and subsequent exhumation, respectively. The oldest eclogite sampled is 415 ± 1 Ma from layered, probably UHP eclogite at Tevik, Averøya, also with a garnet–hornblende assemblage at 410 ± 1 Ma. The Flem Gabbro eclogite margin, with implied UHP conditions, is 410 ± 2 Ma. Hornblende eclogite at Seth, Lepsøya, never at UHP, is 412 ± 2 Ma. These compare to Devonian ages of 401 ± 1 Ma for overgrowths on Proterozoic baddeleyite in Selnes Gabbro, 402 ± 2 Ma for coesite eclogite at Hareidlandet, 405–400 Ma for coesite eclogite at Flatraket, and 405 ± 2 Ma for near-UHP eclogite at Hjelmelandsdalen. The 415 Ma eclogite at Tevik compares to granitic pegmatite in the same outcrop at 395.2 ± 1.3 Ma and to pegmatite in eclogite at Aspøya at 395.3 ± 2 Ma. The 410 Ma age at Flem compares to nearby pegmatite in eclogite at 396 ± 4 Ma. Collectively, these results imply 14–20 million years between deep eclogite crystallization at ∼130 km and return to amphibolite-facies conditions at ∼30 km, with crystallization of locally derived granitoid melts. Nearby garnet-pyroxenite records older ages (∼430) and greater depths (∼200 km), but on similar exhumation paths at ∼0.4–0.7 cm/year.

Lithos ◽  
2018 ◽  
Vol 310-311 ◽  
pp. 153-170 ◽  
Author(s):  
J.P. Butler ◽  
R.A. Jamieson ◽  
G.R. Dunning ◽  
M.E. Pecha ◽  
P. Robinson ◽  
...  

2000 ◽  
Vol 137 (3) ◽  
pp. 235-255 ◽  
Author(s):  
M. KRABBENDAM ◽  
A. WAIN ◽  
T. B. ANDERSEN

The Western Gneiss Region of Norway is a continental terrane that experienced Caledonian high-pressure and ultrahigh-pressure metamorphism. Most rocks in this terrane show either peak-Caledonian eclogite-facies assemblages or are highly strained and equilibrated under late-Caledonian amphibolite-facies conditions. However, three kilometre-size rock bodies (Flatraket, Ulvesund and Kråkenes) in Outer Nordfjord preserve Pre-Caledonian igneous and granulite-facies assemblages and structures. Where these assemblages are preserved, the rocks are consistently unaffected by Caledonian deformation. The three bodies experienced high-pressure conditions (20–23 kbar) but show only very localized (about 5%) eclogitization in felsic and mafic rocks, commonly related to shear zones. The preservation of Pre-Caledonian felsic and mafic igneous and granulite-facies assemblages in these bodies, therefore, indicates widespread (∼ 95%) metastability at pressures higher than other metastable domains in Norway. Late-Caledonian amphibolite-facies retrogression was limited. The degree of reaction is related to the protolith composition and the interaction of fluid and deformation during the orogenic cycle, whereby metastability is associated with a lack of deformation and lack of fluids, either as a catalyst or as a component in hydration reactions. The three bodies appear to have been far less reactive than the external gneisses in this region, even though they followed a similar pressure–temperature evolution. The extent of metastable behaviour has implications for the protolith of the Western Gneiss Region, for the density evolution of high-pressure terranes and hence for the geodynamic evolution of mountain belts.


Lithosphere ◽  
2015 ◽  
Vol 7 (4) ◽  
pp. 379-407 ◽  
Author(s):  
Jared P. Butler ◽  
Christopher Beaumont ◽  
Rebecca A. Jamieson

1970 ◽  
Vol 5 (7) ◽  
pp. 139-140 ◽  
Author(s):  
Ram S Sharma

DOI = 10.3126/hjs.v5i7.1321 Himalayan Journal of Sciences Vol.5(7) (Special Issue) 2008 p.139-140


2010 ◽  
Vol 21 (6) ◽  
pp. 1119-1133 ◽  
Author(s):  
Johannes C. Vrijmoed ◽  
Yuri Y. Podladchikov ◽  
Torgeir B. Andersen ◽  
Ebbe H. Hartz

1998 ◽  
Vol 43 (S1) ◽  
pp. 19-19
Author(s):  
D. G. Chen ◽  
X. C. Zhi ◽  
Q. K. Xia ◽  
T. X. Zhou ◽  
W. D. Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document