orogenic cycle
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 13)

H-INDEX

21
(FIVE YEARS 2)

Author(s):  
Francesco Nosenzo ◽  
Paola Manzotti ◽  
Marc Poujol ◽  
Michel Ballèvre ◽  
Jessica Langlade

2021 ◽  
pp. jgs2021-096
Author(s):  
M. Machek ◽  
I. Soejono ◽  
J. Sláma ◽  
E. Žáčková

The high-grade complexes along the northern Moldanubian periphery of the central Bohemian Massif provide an outstanding structural record of all episodes of the Variscan collisional evolution. Kinematics and timing of orogenic processes have been examined by structural and microstructural study of middle and lower crustal rocks combined with xenotime and monazite geochronology. Four distinct tectonic events have been identified in the studied units. A first relict sub-horizontal fabric S1 associated with the HP/HT metamorphism is developed only in the lower crustal rocks and was related to back-arc extension or lower crustal flow in a supra-subduction domain. This fabric was at c. 340 Ma completely reworked to the sub-vertical foliation S2 by the major collisional thickening leading to the lower and middle crust juxtaposition. Thereafter, the extensional collapse of thickened orogenic system caused strong refolding to the HT sub-horizontal fabric at c. 325 Ma. The region was subsequently affected by the NNE–SSW oriented horizontal shortening related to the dextral shearing and clockwise rotation of crustal blocks adjacent to the large scale dextral shear zone, the Elbe Zone. It led to the fragmentation and reorientation of the Moldanubian margin to the current position.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5708800.v1


Author(s):  
Gianreto Manatschal ◽  
Pauline Chenin ◽  
Rodolphe Lescoutre ◽  
Jordi Miró ◽  
Patricia Cadenas ◽  
...  

The aim of this paper is to provide a conceptual framework that integrates the role of inheritance in the study of rifts, rifted margins and collisional orogens based on the work done in the OROGEN project, which focuses on the Biscay-Pyrenean system. The Biscay-Pyrenean rift system resulted from a complex multistage rift evolution that developed over a complex lithosphere pre-structured by the Variscan orogenic cycle. There is a general agreement that the Pyrenean-Cantabrian orogen resulted from the reactivation of an increasingly mature rift system along-strike, ranging from a mature rifted margin in the west to an immature and segmented hyperextended rift in the east. However, different models have been proposed to explain the preceding syn-rift evolution and its influence on the subsequent reactivation. Results from the OROGEN project show a sequential reactivation of rift inherited decoupling horizons and identify the specific role of exhumed mantle, hyperextended and necking domains during reactivation. They also highlight the contrasting fate of segment centres vs. segment boundaries during convergence, explaining the non-cylindricity of internal parts of collisional orogens. Results from the OROGEN project also suggest that the role of inheritance is more important during the initial stages of subduction and collision, which may explain the complexity of internal parts of orogenic systems. In contrast, once tectonic systems get more mature, orogenic evolution becomes mostly controlled by first-order physical processes as described in the Coulomb Wedge theory for instance. This may account for the simpler and more continuous architecture of external parts of collisional orogens. It may also explain why most numerical models can reproduce mature orogenic and rift architectures with better accuracy compared to the initial stages of such systems. Thus, while inheritance may not explain steady-state processes, it is a prerequisite for comprehending the initial stages of tectonic systems. The new concepts developed from the OROGEN research are now ready to be tested at other orogenic systems that result from the reactivation of rifted margins, such as the Alps, the Colombian cordilleras and the Caribbean, Taiwan, Oman, Zagros or Timor.


2021 ◽  
pp. jgs2020-259
Author(s):  
M. Cathelineau ◽  
M.-C. Boiron ◽  
H. Jakomulski

Triassic evaporites have a very particular location in the Pyrenees, close to detachment areas between the basement and the sedimentary cover, and constitute enormous chlorine and potentially brine reservoir. During the two successive deformation cycles related successively to the Cretaceous rifting and the convergence during early Cenozoic, brines were expulsed and implied in fault activity, breccia formation and fluid-rock interactions. Fluid inclusions from fault infillings and alpine-style fissures sampled all along the Pyrenean chain have a maximal chlorinity close to that of halite-water equilibrium at temperatures between 250 and 350°C. Mixing of brines with low chlorinity waters formed a series of fluids covering an extensive range of salinities. During syn-rift events, the hotter dilute end-member is likely derived from seawater infiltrated and heated near the exhumed mantle as no emerged areas were present at that time. During convergence and thrusting, brines again predominate and mixing occurred with a colder end-member, probably of meteoric origin, consistent with a significant period of relief formation. Brines played, therefore, an essential role in mass and heat transfer during the whole orogenic cycle in the Pyrenees.


2021 ◽  
Author(s):  
Enrico Capezzuoli ◽  
Amalia Spina ◽  
Andrea Brogi ◽  
Domenico Liotta ◽  
Gabriella Bagnoli ◽  
...  

<p>The Pre-Mesozoic units exposed in the inner Northern Apennines mostly consist of middle-late Carboniferous-Permian successions unconformably deposited on a continental crust consolidated at the end of the Variscan (i.e. Hercynian) orogenic cycle (Silurian-Carboniferous). In the inner Northern Apennines, exposures of this continental crust, Cambrian?-early Carboniferous in age, have been described in the Northern Tuscany, Elba Island (Tuscan Archipelago) and, partly, in scattered and isolated outcrops of southern Tuscany. In this contribution, we reappraise the most significative succession (i.e. Risanguigno Formation) exposed in southern Tuscany and considered by most authors as part of the Variscan Basement. New stratigraphic and structural studies, coupled with palynological analyses, allow us to refine the age of the Risanguigno Fm and its geological setting and evolution. Based on the microfloristic content, the structural setting and the fieldwork study, we attribute this formation to late Tournaisian-Visean (middle Mississipian) time interval and conclude it is not showing evidence of a pre-Alpine deformation. These results, together with the already existing data, allow us to presume that no exposures of rocks involved in the Variscan orogenesis occur in southern Tuscany.</p>


2021 ◽  
Author(s):  
Bénédicte Cenki-Tok ◽  
Patrice F. Rey ◽  
Diane Arcay

<p>Long-lived high- to ultra-high temperature (HT-UHT) terranes formed mostly during the Paleo-Proterozoic and are often associated to supercontinent cycles. Yet the detailed processes and conditions involved in their formation remain largely unresolved. Here we highlight the importance of the specific geothermal conditions necessary to form migmatitic to granulitic crusts. An analytical resolution of the heat equation highlights the interdependency of the thermal parameters controlling the crustal geotherm, i.e. the Moho temperature, when deformation occurs at thermal equilibrium. We further perform thermo-mechanical experiments mimicking an orogenic cycle, from shortening to gravitational collapse, to study the effect of deformation velocity that affects the crustal thermal equilibrium. We show that the formation of HT-UHT terranes is promoted by an elevated radiogenic heat production in the crust. Finally, the interplay between the thermal parameters and the orogenic cycle duration explain the difference in orogenic style through time and why some terranes are preferentially granulitic or migmatitic.</p>


2021 ◽  
Author(s):  
Nils Reinhardt ◽  
Axel Gerdes ◽  
Aratz Beranoaguirre ◽  
Max Frenzel ◽  
Lawrence D. Meinert ◽  
...  

<p>Europe´s major Sn and W resources are hosted by magmatic-hydrothermal ore deposits of the Variscan Belt: e.g. in Cornwall, the Erzgebirge, the Iberian Massif, and the French Massif Central. In the Erzgebirge, several major skarn bodies are located in the Schwarzenberg district (12 x 15 km). Although recent geochronological data relates (skarn) ore-formation to late- and post-orogenic magmatic-hydrothermal activity, details on the nature and duration of mineralization events remain insufficiently understood.</p><p>In this study we present innovative in-situ LA-ICP-MS U-Pb geochronology of garnet from several skarn prospects in the Schwarzenberg district, which is complemented with available geochronological data on intrusions and mineralization in order to constrain the timing of skarn formation within the Variscan orogenic cycle.</p><p>Eighteen garnet dates range from 338.2 ± 2.5 to 294 ± 8.3 Ma. Associated errors are in the range of 2.5 to 8.4 Ma, but generally tend to be <7 Ma. The oldest ages (338-331 Ma, stage I) are related to metasomatic garnets of the Globenstein skarn (n=5) – a skarn that is exceptionally enriched in W compared to the other skarn prospects in the same district. Conversely, the other skarns (Antonsthal, Breitenbrunn, Hämmerlein) are younger and range from 327 to 313 Ma (stage II) and 304 to 294 Ma (stage III), respectively. Stage I and II garnets lie within the range of available zircon ages of major intrusive bodies in this area (Aue-Schwarzenberg granite suite: 334-322 Ma; Eibenstock granite: 326-311 Ma). The third stage, in contrast, does not overlap with the age of any known granite intrusions in the Schwarzenberg district. However, it coincides with widespread early Permian volcanic rocks, which presumably have intrusive roots that are not yet exposed in the Erzgebirge region.</p><p>The distribution of garnet ages implies that skarn formation occurred episodically during the ~45 Ma life-time of the Variscan orogen, with the onset of magmatic-hydrothermal activity occurring significantly earlier than previously assumed – at 338 Ma, immediately after the peak of regional metamorphism. Tin and W deposits (skarn, greisen and vein-type) seem to have formed episodically over the entire 45 Ma orogenic cycle of the Erzgebirge – this is consistent with the age range of available geochronological data related to magmatic-hydrothermal ore deposits from other internal parts of the European Variscan Belt.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 84
Author(s):  
Enrico Capezzuoli ◽  
Amalia Spina ◽  
Andrea Brogi ◽  
Domenico Liotta ◽  
Gabriella Bagnoli ◽  
...  

The Pre-Mesozoic units exposed in the inner Northern Apennines mostly consist of Pennsylvanian-Permian successions unconformably deposited on a continental crust consolidated at the end of the Variscan orogenic cycle (Silurian-Carboniferous). In the inner Northern Apennines, exposures of this continental crust, Cambrian?-Devonian in age, have been described in Northern Tuscany, Elba Island (Tuscan Archipelago) and, partly, in scattered and isolated outcrops of southern Tuscany. This paper reappraises the most significant succession (i.e., Risanguigno Formation) exposed in southern Tuscany and considered by most authors as part of the Variscan Basement. New stratigraphic and structural studies, coupled with analyses of the organic matter content, allow us to refine the age of the Risanguigno Fm and its geological setting and evolution. Based on the low diversification of palynoflora, the content of sporomorphs, the structural setting and the new field study, this formation is dated as late Tournaisian to Visean (Middle Mississippian) and is not affected by pre-Alpine deformation. This conclusion, together with the already existing data, clearly indicate that no exposures of rocks involved in the Variscan orogenesis occur in southern Tuscany.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 944
Author(s):  
Annamaria Fornelli ◽  
Vincenzo Festa ◽  
Francesca Micheletti ◽  
Richard Spiess ◽  
Fabrizio Tursi

The application of zircon dating to the reconstruction of orogenic systems is invaluable since time constraints of the geological evolution of orogens are crucial for the proposal of geodynamic and paleogeographic models. Zircon is one of the most promising accessory minerals in geochronology of crystalline basements because of its high-closure temperature. Moreover, U-Pb data of relict and recrystallized grains indicate the maximum sedimentation age as well as the timing of metamorphism in metasediments. In addition, the U-Pb ages of magmatic zircons constrain the timescale of magmatism. The Calabria–Peloritani terrane (CPT) represents a key area in the Southern Variscan Belt, whose reconstruction is still unresolved. Therefore, a review of literature zircon age data accompanied with new data from six samples of orthogneisses, paragneisses, amphibolites, and actinolite schists, helps to constrain the evolution of this Cadomian fragment, affected by metamorphic and magmatic Variscan events. A revisiting of the timing of the geological events from Paleo-proterozoic to Permian is revealed by comparing the internal textures of zircons and their U-Pb age clusters. The detected age peaks at 2500 Ma, 1600 Ma, and 1000 Ma in the CPT were related to a provenance from West and East Gondwana realms. A sedimentation age around 630 Ma emerges for the middle-deep crust terranes of the CPT, affected by Ediacaran (579–540 Ma) intrusions, accompanied by metamorphism dated at 556–509 Ma in the host metasediments. In the following, during Ordovician–Silurian extensional tectonics, the former Cadomian terranes were at least locally affected by fluid-assisted metamorphism (around 450 Ma) whereas the upper extensional basins that formed, were infilled by sediments along with interspersed volcanic to subvolcanic products. All these pre-Silurian terranes were involved in the subduction process of the Palaeotethys–Gondwana margin beneath Laurussia. The compressive phase began around 347 Ma, with under-thrusting of the formerly Gondwana substrate that was subjected to middle-high grade metamorphism, while the Ordovician–Silurian sediments were scraped off along the front of the Southern Variscan Belt and affected by low-grade metamorphism. Decompression of the whole Variscan orogenic system started around 320 Ma, together with uplifting of the chain and emplacement of widespread granitic intrusions which ended around 280 Ma and completed the Variscan orogenic cycle in the CPT.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 936
Author(s):  
Tae-Ho Lee ◽  
Kye-Hun Park

There was a hiatus in magmatism in Korea and Japan, located on the eastern continental margin of Asia, during a period of about 40 Ma from 160 Ma to 120 Ma. The cause of the resumption of magmatism since then is not yet well understood. In this study, we analyzed the Hf isotope composition of detrital zircons in the Cretaceous sediments of Korea (Hayang Group) and Japan (Goshoura and Himenoura groups) to investigate the tectonic evolution of eastern Asia in the Early Cretaceous period. εHf(t) in Cretaceous zircons from Japanese samples values from +8.2 to +0.1, suggesting that magmatism was sourced from the depleted juvenile materials, which is compatible with ridge subduction and subsequent melting of the young oceanic crust. εHf(t) values from Cretaceous zircons in the Hayang Group are negative, except for the Jindong Formation, which had a sediment supply from Japan, indicating that the old continental crust material of the Korean Peninsula was included in the magma generation. The detrital zircons of this study exhibit a depleted isotopic character at the beginning of subduction-related magmatism in Permian and Early Cretaceous, and then gradually change to a more enriched composition. This trend may be a typical example of the Pacific-type orogenic cycle.


Sign in / Sign up

Export Citation Format

Share Document