Partition coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between monosulfide solid solution and sulfide liquid and the formation of compositionally zoned Ni – Cu sulfide bodies by fractional crystallization of sulfide liquid

1997 ◽  
Vol 34 (4) ◽  
pp. 366-374 ◽  
Author(s):  
Sarah-Jane Barnes ◽  
E. Makovicky ◽  
M. Makovicky ◽  
J. Rose-Hansen ◽  
S. Karup-Moller

Many nickel–copper sulfide orebodies contain Cu- and Fe-rich portions. The Fe-rich ore is generally richer in Os, Ir, Ru, and Rh and poorer in Pt, Pd, and Au than the Cu-rich ore. In komatiite-hosted ores Ni tends to be concentrated in the Cu-rich ore, whereas in tholeiitic ores it tends to be concentrated in the Fe-rich ore. The origin of this zonation could be due to crystal fractionation of Fe-rich monosulfide solid solution from a sulfide liquid. The crystal fractionation would produce an Fe-rich cumulate enriched in Os, Ir, Ru, and Rh and a fractionated liquid enriched in Cu, Pt, Pd, and Au. This model can be tested for zoned orebodies by applying experimentally determined partition coefficients for the metals into monosulfide solid solution. We have compared our experimental results with those of other workers to show that the partition coefficients are strongly influenced by the sulfur content of the system. There is a positive correlation between the partition coefficients and sulfur content of the monosulfide solid solution and between the partition coefficients and the sulfur content of the liquid. In sulfur-saturated and sulfur-over-saturated experimental systems, the metals behave in a manner consistent with the model, that is, Os, Ir, Ru, and Rh are compatible with monosulfide solid solution, Cu, Pd, and Pt are incompatible, and Ni has a partition coefficient close to 1. The use of the experimental partition coefficients is demonstrated in the numerical modelling of a zoned komatiite-related ore (Alexo, Abitibi Greenstone Belt) and a zoned tholeiite-related ore (Oktyabr'sky, Noril'sk region, Siberia). In both cases, the experimental partition coefficients numerically model the composition zones of the actual ores. This supports the model of fractional crystallization of a monosulfide solid solution from a sulfide liquid to form zoned orebodies. Furthermore, it indicates that the experimentally determined partition coefficients are geologically reasonable.

2020 ◽  
Vol 115 (6) ◽  
pp. 1245-1266 ◽  
Author(s):  
Charley J. Duran ◽  
Sarah-Jane Barnes ◽  
Eduardo T. Mansur ◽  
Sarah A.S. Dare ◽  
L. Paul Bédard ◽  
...  

Abstract Mineralogical and chemical zonations observed in massive sulfide ores from Ni-Cu-platinum group element (PGE) deposits are commonly ascribed to the fractional crystallization of monosulfide solid solution (MSS) and intermediate solid solution (ISS) from sulfide liquid. Recent studies of classic examples of zoned orebodies at Sudbury and Voisey’s Bay (Canada) demonstrated that the chemistry of magnetite crystallized from sulfide liquid was varying in response to sulfide fractional crystallization. Other classic examples of zoned Ni-Cu-PGE sulfide deposits occur in the Norilsk-Talnakh mining district (Russia), yet magnetite in these orebodies has received little attention. In this contribution, we document the chemistry of magnetite in samples from Norilsk-Talnakh, spanning the classic range of sulfide composition, from Cu poor (MSS) to Cu rich (ISS). Based on textural features and mineral associations, four types of magnetite with distinct chemical composition are identified: (1) MSS magnetite, (2) ISS magnetite, (3) reactional magnetite (at the sulfide-silicate interface), and (4) hydrothermal magnetite (resulting from sulfide-fluid interaction). Compositional variability in lithophile and chalcophile elements records sulfide fractional crystallization across MSS and ISS magnetites and sulfide interaction with silicate minerals (reactional magnetite) and fluids (hydrothermal magnetite). Estimated partition coefficients for magnetite in sulfide systems are unlike those in silicate systems. In sulfide systems, all lithophile elements are compatible and chalcophile elements tend to be incompatible with magnetite, but in silicate systems some lithophile elements are incompatible and chalcophile elements are compatible with magnetite. Finally, comparison with magnetite data from other Ni-Cu-PGE sulfide deposits pinpoints that the nature of parental silicate magma, degree of sulfide evolution, cocrystallizing phases, and alteration conditions influence magnetite composition.


2020 ◽  
Vol 55 (8) ◽  
pp. 1515-1534
Author(s):  
M. Moilanen ◽  
E. Hanski ◽  
J. Konnunaho ◽  
T. Törmänen ◽  
S.-H. Yang ◽  
...  

Abstract Using electron probe microanalyzer (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), we analyzed major and trace element compositions of iron oxides from Ni-Cu-PGE sulfide deposits hosted by mafic-ultramafic rocks in northern Fennoscandia, mostly focusing on Finland. The main research targets were the Archean Ruossakero Ni-(Cu) deposit; Tulppio dunite and related Ni-PGE mineralization; Hietaharju, Vaara, and Tainiovaara Ni-(Cu-PGE) deposits; and Paleoproterozoic Lomalampi PGE-(Ni-Cu) deposit. In addition, some reference samples from the Pechenga (Russia), Jinchuan (China), and Kevitsa (Finland) Ni-Cu-PGE sulfide deposits, and a barren komatiite sequence in the Kovero area (Finland) were studied. Magnetite and Cr-magnetite show a wide range of trace element compositions as a result of the variation of silicate and sulfide melt compositions and their post-magmatic modification history. Most importantly, the Ni content in oxide shows a positive correlation with the Ni tenor of the sulfide phase in equilibrium with magnetite, regardless of whether the sulfide assemblage is magmatic or post-magmatic in origin. The massive sulfide samples contain an oxide phase varying in composition from Cr-magnetite to magnetite, indicating that Cr-magnetite can crystallize directly from sulfide liquid. The Mg concentration of magnetites in massive sulfide samples is lowest among the samples analyzed, and this can be regarded as a diagnostic feature of an oxide phase crystallized together with primitive Fe-rich MSS (monosulfide solid solution). Our results show that magnetite geochemistry, plotted in appropriate discrimination diagrams, together with petrographical observations could be used as an indicator of potential Ni-(Cu-PGE) mineralization.


2018 ◽  
Vol 273 ◽  
pp. 170-180 ◽  
Author(s):  
Dongwei Du ◽  
Rong Lan ◽  
John Humphreys ◽  
Houari Amari ◽  
Shanwen Tao

Solid Earth ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Ariadni A. Georgatou ◽  
Massimo Chiaradia

Abstract. We investigate the occurrence and chemistry of magmatic sulfides and their chalcophile metal cargo behaviour during the evolution of compositionally different magmas from diverse geodynamic settings both in mineralised and barren systems. The investigated areas are the following: (a) the Miocene Konya magmatic province (hosting the Doğanbey Cu–Mo porphyry and Inlice Au epithermal deposits, representing post-subduction) and (b) the Miocene Usak basin (Elmadag, Itecektepe, and Beydagi volcanoes, the latter associated with the Kişladağ Au porphyry in western Turkey, representing post-subduction). For comparison we also investigate (c) the barren intraplate Plio-Quaternary Kula volcanic field west of Usak. Finally, we discuss and compare all the above areas with the already studied (d) Quaternary Ecuadorian volcanic arc (host to the Miocene Llurimagua Cu–Mo and Cascabel Cu–Au porphyry deposits, representing subduction). The volcanism of the newly studied areas ranges from basalts to andesites–dacites and from high-K calc-alkaline to shoshonitic series. Multiphase magmatic sulfides occur in different amounts in rocks of all investigated areas, and, based on textural and compositional differences, they can be classified into different types according to their crystallisation at different stages of magma evolution (early versus late saturation). Our results suggest that independently of the magma composition, geodynamic setting, and association with an ore deposit, sulfide saturation occurred in all investigated magmatic systems. Those systems present similar initial metal contents of the magmas. However, not all studied areas present all sulfide types, and the sulfide composition depends on the nature of the host mineral. A decrease in the sulfide Ni∕Cu (a proxy for the monosulfide solid solution (mss) to intermediate solid solution (iss) ratio) is noted with magmatic evolution. At an early stage, Ni-richer, Cu-poorer sulfides are hosted by early crystallising minerals, e.g. olivine–pyroxene, whereas, at a later stage, Cu-rich sulfides are hosted by magnetite. The most common sulfide type in the early saturation stage is composed of a Cu-poor, Ni-rich (pyrrhotite mss) phase and one to two Cu-rich (cubanite, chalcopyrite iss) phases, making up ∼84 and ∼16 area % of the sulfide, respectively. Sulfides resulting from the late stage, consisting of Cu-rich phases (chalcopyrite, bornite, digenite iss), are hosted exclusively by magnetite and are found only in evolved rocks (andesites and dacites) of magmatic provinces associated with porphyry Cu (Konya and Ecuador) and porphyry Au (Beydagi) deposits.


Sign in / Sign up

Export Citation Format

Share Document