U–Pb geochronologic constraints on Paleoproterozoic orogenesis in the northwestern Makkovik Province, Labrador, Canada

1997 ◽  
Vol 34 (8) ◽  
pp. 1072-1088 ◽  
Author(s):  
J. W. F. Ketchum ◽  
G. R. Dunning ◽  
N. G. Culshaw

A 45 km wide, shear-zone-bounded segment of the northwestern Makkovik Province, Labrador, is underlain by Archean gneisses derived from the adjacent Nain craton. This lithotectonic block (Kaipokok domain) was reworked at high metamorphic grade, overthrust by supracrustal sequences (Lower Aillik and Moran Lake groups), and intruded by granitoid plutons during the Paleoproterozoic. Initial amphibolite-facies reworking of the Kaipokok domain at 1896 ± 6 Ma is indicated by U–Pb ages of metamorphic zircon from a foliated Kikkertavak metadiabase dyke. This is one of the oldest Paleoproterozoic tectonic events dated thus far in northeast Laurentia and may be linked with ca. 1890 Ma plutonism documented elsewhere in the Kaipokok domain. Intrusion of granitoid plutons at [Formula: see text], 1877 ± 5, and [Formula: see text] in the Kaipokok Bay area postdates early thick- and thin-skinned thrusting (possibly east to northeast directed) that involved Lower Aillik Group strata. U–Pb titanite ages of 1866–1847 Ma in part record a metamorphic event that followed this plutonic–tectonic activity. These early events are temporally and kinematically difficult to reconcile with accretion of juvenile Makkovikian terranes in the southeast and may instead be related to early stages of the ca. 1.91–1.72 Ga Torngat orogeny along the western margin of the Nain craton. In contrast, high-grade metamorphism, dextral shearing, and northwestward thrusting between 1841 and 1784 Ma, including crystallization of an Iggiuk granitic vein at 1811 ± 8 Ma, are in accord with accretion of Makkovikian terranes in a dextral transpressional regime (Makkovikian orogeny sensu stricto). Coeval sinistral transpression in the Torngat orogen suggests that both otogenic belts accommodated relative northward tectonic escape of the Nain craton during this interval.


2016 ◽  
Vol 53 (12) ◽  
pp. 1443-1457 ◽  
Author(s):  
Lucie Mathieu ◽  
Rose-Anne Bouchard ◽  
Vital Pearson ◽  
Réal Daigneault

The Coulon deposit is a volcanogenic massive sulphide (VMS) system in the James Bay area, Superior craton, Quebec, that was metamorphosed to amphibolite-facies conditions. The chemistry and mineralogy of the VMS-related alteration halo proximal to the mineralized sulphide lenses are investigated, using samples collected in the field and 5583 chemical analyses provided by Osisko Ltd. Alteration is quantified using mass balance and normative calculations, and the application and performance of these methods in an exploration context are investigated. In VMS systems, altered rocks proximal to the ore zones are characterized by multi-element metasomatism, which is best quantified by mass balance methods that have been successfully applied in the study area. However, mass balance calculations necessitate the documentation of a precursor, which is not always possible in an exploration context; therefore, an alternative method (i.e., alteration indices) was also evaluated. In most VMS systems, proximal alteration is characterized by chlorite (chloritization), muscovite (sericitization), and quartz (silicification), while at the Coulon deposit, altered rocks contain mostly cordierite, biotite, sillimanite, and quartz. Alteration indices were calculated using observed and normative minerals, and provide satisfactory results similar to those obtained with mass balance calculations. Using these results, recommendations are made to estimate the intensity of alteration in the core shack using the proportions of observed minerals. Alteration indices are sensitive to the composition of precursors; and because of high-grade metamorphism, chloritization and sericitization are not precisely quantified. Recognizing these limitations is essential to successful quantification of alteration in areas metamorphosed to high-grade conditions.



Author(s):  
Donald H. W. Hutton ◽  
Gary M. Ingram

The Great Tonalite Sill (GTS) of southeastern Alaska and British Columbia (Brew & Ford 1981; Himmelberg et al. 1991) is one of the most remarkable intrusive bodies in the world: it extends for more than 800 km along strike and yet is only some 25 km or less in width. It consists of a belt of broadly tonalitic sheet-like plutons striking NW–SE and dipping steeply NE, and has been dated between 55 Ma and 81 Ma (J. L. Wooden, written communication to D. A. Brew, April 1990) (late Cretaceous to early Tertiary). The sill (it is steeply inclined and rather more like a “dyke”) is emplaced along the extreme western margin of the Coast Plutonic and Metamorphic Complex (CPMC), the high grade core of the Western Cordillera. The CPMC forms the western part of a group of tectonostratigraphic terranes including Stikine and Cache Creek, collectively known as the Intermontane Superterrane (Rubin et al. 1990). To the W of the GTS, rocks of the Insular Superterrane, including the Alexander and Wrangellia terranes and the Gravina belt, form generally lower metamorphic grade assemblages. The boundary between these two superterranes is obscure but it may lie close to, or be coincident with, the trace of the GTS.



1997 ◽  
Vol 9 (1) ◽  
pp. 74-91 ◽  
Author(s):  
S.L. Harley ◽  
L.P. Black

The long and complex Archaean evolution of the Napier Complex of Enderby Land, characterized by high-grade metamorphism and several strong deformations, is reassessed in the light of new SHRIMPU–Pb zircon dating results bearing on the ages of protoliths and possible regional extents of distinct Archaean tectonothermal events. Initial felsic igneous activity occurred over a significant time interval c. 3800 Ma ago. An age of 2980±9 Ma for the emplacement of charnockite at Proclamation Island might date the oldest tectonothermal event to be recognized in the Napier Complex. An ensuing, very-high grade, previously imprecisely dated tectonothermal event occurred at 2837±15 Ma. U–Pb zircon ages ranging from 2456+8/−5 Ma to 2481±4 Ma date a subsequent, protracted high-grade tectonothermal event. Whereas the ~2840 Ma event is of regional importance in the Amundsen Bay-Casey Bay area, it is possible that the ~2980 Ma event was of only moderate grade, minor importance, or even absent, in that part of the Complex. If so, the apparent trend to very-high temperature metamorphism in the Tula and Scott mountains compared with the Napier Mountains may reflect two distinct metamorphic events rather than a simple baric and thermal gradient. The oldest crustal component in the Napier Complex appears to have been of igneous derivation. Zircon populations in paragneisses at Mount Sones are similar to those in the nearby orthogneisses, which therefore may have been basement. Another paragneiss, in the Casey Bay area, yields no zircons older than 2840 Ma, probably indicating that pre-3000 Ma crust, which is now located nearby, was not exposed at the time of sedimentation there. The isotopic data are quite complex, particularly in rocks that experienced postcrystallization metamorphic temperatures of 1000°C or more. It is postulated that this complexity, which was largely the product of migration of radiogenic Pb within the zircon grains in ancient times, and produced local excesses of this element with respect to its parent U, was caused by volume diffusion at these abnormally high regional crustal temperatures.



1992 ◽  
Vol 29 (12) ◽  
pp. 2663-2676 ◽  
Author(s):  
J. Victor Owen

In southwestern Newfoundland, pelitic migmatites of the Meelpaeg Subzone of the Gander Zone are separated by faults and plutons from metasedimentary rocks of the Port-aux-Basques gneiss complex (PBGC). The PBGC is a polymetamorphic sequence of amphibolite-facies, pelitic, semipelitic, and psammitic rocks (and associated metabasic dykes). Maximum metamorphic grade surpassed the first sillimanite (i.e., staurolite-consuming) isograd. Metamorphic conditions approached 650–700 °C at Pmax approximately 6.5–8.5 kbar (1 kbar = 100 MPa).The Meelpaeg gneisses also include sillimanite-grade, two-mica rocks, but they lack the Barrovian mineralogy (e.g., kyanite, staurolite, rutile) characterizing parts of the PBGC. The Meelpaeg rocks attained temperatures similar to those of the PBGC, but confining pressure was substantially lower (approx. 4 kbar), indicating uplift from relatively shallow structural levels.Both groups of paragneisses also differ in some aspects of their bulk chemistry (notably CaO/K2O ratios) and their lithologic associations. The Meelpaeg metapelites are less calcic and relatively potassic (mean CaO/K2O = 0.32) compared with their counterparts in the PBGC (mean CaO/K2O = 1.12), but both groups of rocks have similar bulk Fet/(Fet + Mg) ratios (mean XFe ≈ 0.75). In contrast with the PBGC, which contains abundant metabasites and thin coticule-like (garnet + quartz) seams, the Meelpaeg metapelites are associated with biotite + garnet "tonalitic" gneiss and, despite their relatively lime-poor composition, calc-silicate layers and pods.In terms of contrasting lithologic associations and bulk chemistry, paragneiss of the PBGC is distinct from gneissic rocks in the Meelpaeg Subzone. This underscores difficulties in relating rocks in the Port-aux-Basques area to well-established lithotectonic entities elsewhere in Newfoundland. Despite apparent differences in their protoliths and contrasts in metamorphic pressure, available U–Pb data suggest that high-grade metamorphism in both areas occurred during the middle Silurian.





2011 ◽  
Vol 48 (2) ◽  
pp. 389-417 ◽  
Author(s):  
R. D. Tucker ◽  
J.-Y. Roig ◽  
C. Delor ◽  
Y. Amelin ◽  
P. Goncalves ◽  
...  

The Precambrian shield of Madagascar is reevaluated with recently compiled geological data and new U–Pb sensitive high-resolution ion microprobe (SHRIMP) geochronology. Two Archean domains are recognized: the eastern Antongil–Masora domain and the central Antananarivo domain, the latter with distinctive belts of metamafic gneiss and schist (Tsaratanana Complex). In the eastern domain, the period of early crust formation is extended to the Paleo–Mesoarchean (3.32–3.15 Ga) and a supracrustal sequence (Fenerivo Group), deposited at 3.18 Ga and metamorphosed at 2.55 Ga, is identified. In the central domain, a Neoarchean period of high-grade metamorphism and anatexis that affected both felsic (Betsiboka Suite) and mafic gneisses (Tsaratanana Complex) is documented. We propose, therefore, that the Antananarivo domain was amalgamated within the Greater Dharwar Craton (India + Madagascar) by a Neoarchean accretion event (2.55–2.48 Ga), involving emplacement of juvenile igneous rocks, high-grade metamorphism, and the juxtaposition of disparate belts of mafic gneiss and schist (metagreenstones). The concept of the “Betsimisaraka suture” is dispelled and the zone is redefined as a domain of Neoproterozoic metasedimentary (Manampotsy Group) and metaigneous rocks (Itsindro–Imorona Suite) formed during a period of continental extension and intrusive igneous activity between 840 and 760 Ma. Younger orogenic convergence (560–520 Ma) resulted in east-directed overthrusting throughout south Madagascar and steepening with local inversion of the domain in central Madagascar. Along part of its length, the Manampotsy Group covers the boundary between the eastern and central Archean domains and is overprinted by the Angavo–Ifanadiana high-strain zone that served as a zone of crustal weakness throughout Cretaceous to Recent times.



2020 ◽  
Author(s):  
J Amal Dev ◽  
J K Tomson ◽  
K Anto Francis ◽  
Nilanjana Sorcar ◽  
V Nandakumar


Sign in / Sign up

Export Citation Format

Share Document