high metamorphic grade
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Anthony Reid ◽  
Marnie Forster ◽  
Wolfgang Preiss ◽  
Alicia Caruso ◽  
Stacey Curtis ◽  
...  

Abstract. Low metamorphic grade rocks contain both detrital minerals and minerals newly grown or partly recrystallised during diagenesis and metamorphism. However, rocks such as these typically yield complex 40Ar/39Ar age spectra that can be difficult to interpret. In this study, we have analysed a suite of variably deformed rocks from a region of low metamorphic grade within the c. 514–490 Ma Delamerian Orogen, South Australia. The samples analysed range from siltstone and shale to phyllite and all contain either muscovite or phengite determined by hyperspectral mineralogical characterisation. Furnace step heating 40Ar/39Ar analysis produced complex apparent age spectra with multiple age components. Using the concept of asymptotes that define minimum and maximum ages for different components, we interpret the age spectra to preserve a range of detrital mineral ages, along with younger components related to either cooling or deformation- induced recrystallisation. Two samples contain Mesoproterozoic detrital age components, up to c. 1170 Ma, while the c. 515 Ma Heatherdale Shale which has both c. 566 Ma and c. 530 Ma detrital components. All samples contain younger lower (younger) asymptotes in the age spectra defined from multiple heating steps that range from c. 476 to c. 460 Ma. One interpretation of these younger ages is that they are caused by post-metamorphic cooling. However, the shape of the age spectra and the degree of deformation in the phyllites suggest the ages may record recrystallisation of detrital minerals and/or new mica growth during deformation. Potentially these c. 476 to c. 460 Ma ages suggest deformation in the upper portion of the orogen was facilitated by movement along regional faults and shear zones up to around 20 million years after the cessation of deformation in the high-metamorphic grade regions of the Delamerian Orogen.


Geosphere ◽  
2021 ◽  
Author(s):  
Laurent Godin ◽  
Mark Ahenda ◽  
Djordje Grujic ◽  
Ross Stevenson ◽  
John Cottle

Assigning correct protolith to high metamorphic-grade core zone rocks of large hot orogens is a particularly important challenge to overcome when attempting to constrain the early stages of orogenic evolution and paleogeography of lithotectonic units from these orogens. The Gurla Mandhata core complex in NW Nepal exposes the Himalayan metamorphic core (HMC), a sequence of high metamorphic-grade gneiss, migmatite, and granite, in the hinterland of the Himalayan orogen. Sm-Nd isotopic analyses indicate that the HMC comprises Greater Himalayan sequence (GHS) and Lesser Himalayan sequence (LHS) rocks. Conventional interpretation of such provenance data would require the Main Central thrust (MCT) to be also outcropping within the core complex. However, new in situ U-Th/Pb monazite petrochronology coupled with petrographic, structural, and microstructural observations reveal that the core complex is composed solely of rocks in the hanging wall of the MCT. Rocks from the core complex record Eocene and late Oligocene to early Miocene monazite (re-)crystallization periods (monazite age peaks of 40 Ma, 25–19 Ma, and 19–16 Ma) overprinting pre- Himalayan Ordovician Bhimphedian metamorphism and magmatism (ca. 470 Ma). The combination of Sm-Nd isotopic analysis and U-Th/ Pb monazite petrochronology demonstrates that both GHS and LHS protolith rocks were captured in the hanging wall of the MCT and experienced Cenozoic Himalayan metamorphism during south-directed extrusion. Monazite ages do not record metamorphism coeval with late Miocene extensional core complex exhumation, suggesting that peak metamorphism and generation of anatectic melt in the core complex had ceased prior to the onset of orogen-parallel hinterland extension at ca. 15–13 Ma. The geometry of the Gurla Mandhata core complex requires significant hinterland crustal thickening prior to 16 Ma, which is attributed to ductile HMC thickening and footwall accretion of LHS protolith associated with a Main Himalayan thrust ramp below the core complex. We demonstrate that isotopic signatures such as Sm-Nd should be used to characterize rock units and structures across the Himalaya only in conjunction with supporting petrochronological and structural data.


1997 ◽  
Vol 34 (8) ◽  
pp. 1072-1088 ◽  
Author(s):  
J. W. F. Ketchum ◽  
G. R. Dunning ◽  
N. G. Culshaw

A 45 km wide, shear-zone-bounded segment of the northwestern Makkovik Province, Labrador, is underlain by Archean gneisses derived from the adjacent Nain craton. This lithotectonic block (Kaipokok domain) was reworked at high metamorphic grade, overthrust by supracrustal sequences (Lower Aillik and Moran Lake groups), and intruded by granitoid plutons during the Paleoproterozoic. Initial amphibolite-facies reworking of the Kaipokok domain at 1896 ± 6 Ma is indicated by U–Pb ages of metamorphic zircon from a foliated Kikkertavak metadiabase dyke. This is one of the oldest Paleoproterozoic tectonic events dated thus far in northeast Laurentia and may be linked with ca. 1890 Ma plutonism documented elsewhere in the Kaipokok domain. Intrusion of granitoid plutons at [Formula: see text], 1877 ± 5, and [Formula: see text] in the Kaipokok Bay area postdates early thick- and thin-skinned thrusting (possibly east to northeast directed) that involved Lower Aillik Group strata. U–Pb titanite ages of 1866–1847 Ma in part record a metamorphic event that followed this plutonic–tectonic activity. These early events are temporally and kinematically difficult to reconcile with accretion of juvenile Makkovikian terranes in the southeast and may instead be related to early stages of the ca. 1.91–1.72 Ga Torngat orogeny along the western margin of the Nain craton. In contrast, high-grade metamorphism, dextral shearing, and northwestward thrusting between 1841 and 1784 Ma, including crystallization of an Iggiuk granitic vein at 1811 ± 8 Ma, are in accord with accretion of Makkovikian terranes in a dextral transpressional regime (Makkovikian orogeny sensu stricto). Coeval sinistral transpression in the Torngat orogen suggests that both otogenic belts accommodated relative northward tectonic escape of the Nain craton during this interval.


1994 ◽  
Vol 31 (3) ◽  
pp. 583-596 ◽  
Author(s):  
David Corrigan ◽  
Nicholas G. Culshaw ◽  
Jim K. Mortensen

The Parautochthonous Belt in the region of Key Harbour, Ontario, is composed of Early Proterozoic migmatitic para- and orthogneiss and Mid-Proterozoic granitoids, which were reworked during the Grenville orogeny. Grenvillian deformation is localized into anastomosing arrays of high-strain shear zones enclosing elongate bands and lozenges of rock subjected to lower and near-coaxial strain. Crosscutting relationships preserved in the low-strain domains document two pre-Grenvillian plutonic and tectonometamorphic events, which are bracketed in age by U–Pb zircon geochronology. A 1694 Ma leucogranite intrudes, and provides a minimum age for, high metamorphic grade gneisses formed during an earlier tectonometamorphic event (D1–M1). The leucogranite was intruded by mafic dykes, deformed, and metamorphosed at uppermost amphibolite facies during D2–M2, before the emplacement of Mid-Proterozoic granitoids at ca. 1450 Ma. Following the emplacement of gabbro dykes and pods at ca. 1238 Ma, the area was overprinted by granulite to uppermost amphibolite facies metamorphism (Grenvillian), for which monazites provide a minimum age of ca. 1035 Ma. Titanite U–Pb ages of 1003 – 1004 Ma record cooling through 600 °C. A regionally important swarm of east–west-trending posttectonic pegmatite dykes dated by U–Pb zircon at 990 Ma provides a minimum age for Grenvillian ductile deformation. The present data support the contention that the Parautochthonous Belt in the Key Harbour area consists in part of reworked midcontinental crust of Early to Mid-Proterozoic age.


1951 ◽  
Vol 88 (1) ◽  
pp. 25-35 ◽  
Author(s):  
John Sutton ◽  
Janet Watson

AbstractThe metamorphism of Pre-Cambrian dolerites in the Northwest Highlands is described and compared with that of basic rocks in the Southwest Highlands, Banffshire and other regions. The first products of metamorphism are not the same in every area. It is suggested that the trend of regional metamorphism differs according to the environment in which it took place, and that a sequence of changes established in one area cannot be used as a standard by which to judge the changes in other areas. In particular, rocks of high metamorphic grade have not invariably passed through stages characterized by low-grade minerals.


Sign in / Sign up

Export Citation Format

Share Document