neoproterozoic magmatism
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 17)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Naresh Kumar ◽  
Radhika Sharma

The present contribution reports on the field, petrographical and geochemical observations of the volcano-plutonic rocks of the Nakora Ring Complex (NRC) from the Neoproterozoic, Malani Igneous Suite (MIS) (Northwestern Peninsular India) and confers about their magmatic evolution and tectonic implications. Three magmatic phases are notable in the NRC which is Extrusive, Intrusive and Dyke phase where with small quantities of basaltic flows was initiated and accompanied by extensive/voluminous acidic flows. Petrographically, rhyolite shows flow bands, porphyritic, spherulitic, aphyritic and perlitic textures whereas basalt flows are distinguished by the presence of labradorite in lath-shaped crystals (plagioclase feldspar) and clinopyroxene (augite). The presence of high silica and total alkalis in NRC rocks, as well as high field strength elements (HFSE), enrichment of trace elements and negative anomalies of Sr., Eu, P, and Ti indicates that the emplacement of the lava flows was controlled by complex magmatic processes such as fractional crystallization, crustal contamination and partial melting. The association of basalt-trachyte-rhyolite means that the magma chamber was supplied a significant amount of heat to the crust before the eruption. Moreover, a volcanic vent was also reported at NRC where rhyolite was associated with agglomerate, volcanic breccia, perlite and tuff. The current research proposed that the Neoproterozoic magmatism at NRC was controlled by rift-related mechanism and produced from crustal source where the heat was supplied by mantle plume.


Author(s):  
Yiming Liu ◽  
Yuhua Wang ◽  
Sanzhong Li ◽  
M. Santosh ◽  
Runhua Guo ◽  
...  

The Tibetan Plateau is composed of several microblocks, the tectonic affinity and paleogeographic correlations of which remain enigmatic. We investigated the Amdo and Jiayuqiao microblocks in central Tibet Plateau with a view to understand their tectonic setting and paleogeographic position within the Neoproterozoic supercontinent Rodinia. We present zircon U-Pb and Lu-Hf isotope, and whole-rock geochemical data on Neoproterozoic granitic gneisses from these microblocks. Zircon grains from the Jiayuqiao granitic gneiss yielded an age of 857 ± 9 Ma with variable εHf(t) values (−8.9 to 4.0). The Amdo granitic gneisses yielded ages of 893 ± 5 Ma, 807 ± 5 Ma, and 767 ± 11 Ma, with εHf(t) values in the range of −4.9 to 3.5. Geochemically, the granitoids belong to high-K calc-alkaline series, with the protolith derived from partial melting of ancient crustal components. The ascending parental magma of the Amdo granitoids experienced significant mantle contamination as compared to the less contaminated magmas that generated the Jiayuqiao intrusions. In contrast to the Lhasa, Himalaya, South China, and Tarim blocks, we suggest that the Amdo and Jiayuqiao microblocks probably formed a unified block during the Neoproterozoic and were located adjacent to the southwestern part of South China craton. The Neoproterozoic magmatism was probably associated with the subduction of the peripheral ocean under the South China craton and the delamination of lithospheric mantle beneath the Jiangnan orogen.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 414
Author(s):  
Lujun Lin ◽  
Renyi Chen ◽  
Zhenshan Pang ◽  
Hui Chen ◽  
Jianling Xue ◽  
...  

The Hongnipo deposit, a newly discovered large copper deposit in the Kangdian copper belt, SW China, is hosted in the Paleoproterozoic Hekou Group. This deposit contains ~4200 Mt of Cu ores, with an average grade of 1.42 wt.% Cu. Orebodies occur mainly as stratiform, stratoid and lenticular forms. Mineralization consists predominantly of high grade vein-type ores and low grade laminated ores. Field relationships indicate vein-type mineralization crosscuts laminated mineralization and host rocks, indicating that there were at least two mineralization events during the formation of the deposit. Pyrite separates from the laminated ores yield a Rb-Sr isochron age of 1552 ± 80 Ma, with a highly radiogenic initial 87Sr/86Sr ratio of 0.71214 ± 0.00081, indicating a major contribution from the ore-hosting rocks. Sulfides from the laminated ores have δ34S values ranging from −1.8‰ to 11.4‰, with the vast majority in the range of 5.3‰ to 11.4‰, suggesting the mixed derivation of sulfur from seawater sulfates and magmatic fluids. Chalcopyrite separates from the vein-type ores have a Re-Os isochron age of 794.8 ± 7.9 Ma. The initial 187Os/188Os (2.8 ± 1.2) and γOs (+2202) values are slightly lower than the average values of continental crust, indicating a major metal source of the Hekou Group with minor mantle input. Sulfides from the vein-type ores have δ34S values that range from −10.3‰ to 4.0‰ and cluster between 0‰ to 2.2‰, which implies a significant contribution of magmatic-sourced sulfur with minor biogenic sulfur. Two major mineralization events have been identified. The Rb-Sr age of the laminated ores likely records a VMS mineralization event at ~1.6 Ga. The much younger Re-Os age is considered to represent the timing of an important mineralization event, which is likely related to the Neoproterozoic magmatism and/or metamorphism and represents a newly documented mineralization event to be targeted by exploration.


2020 ◽  
Vol 11 (1) ◽  
pp. 89-106
Author(s):  
R. O. Ovchinnikov ◽  
A. A. Sorokin ◽  
N. M. Kudryashov ◽  
V. P. Kovach ◽  
J. V. Plotkina ◽  
...  

The article presents new age data on the ‘key’ Early Paleozoic igneous complexes located in the central part of the Bureya continental massif of the Central Asian Fold Belt. Porphyroblastic quartz monzonites of the Kivili complex are dated to 453±2 Ma. The age of gneissic granites of the Sularin complex is ~481 Ma. The Sm-Nd isotope stu­dies show that Late Ordovician quartz monzonites were formed mainly from crustal sources with Paleoproterozoic Nd model isotopic ages. Both ancient (Paleoproterozoic?) and younger sources were involved in the formation of Cambrian granites. Our data, as well as previously published materials, suggest several stages of the Early Paleozoic magmatism in the evolution of the Bureya continental massif: ~541, ~504–500, ~487, ~474 and ~453 Ma. Early Paleozoic magmatism developed under a similar scenario in the Jiamusi continental massif. In addition to the synchronism of Neoproterozoic magmatism within these continental massifs, this feature testifies to their common geological history.


Sign in / Sign up

Export Citation Format

Share Document