Contemporaneous eruption of Nb-enriched basalts – K-adakites – Na-adakites from the 2.7 Ga Penakacherla terrane: implications for subduction zone processes and crustal growth in the eastern Dharwar craton, India

2012 ◽  
Vol 49 (4) ◽  
pp. 615-636 ◽  
Author(s):  
Robert Kerrich ◽  
Chakravadhanula Manikyamba

An association of Nb-enriched basalts (NEB), high-MgO andesites (HMA), and flows with adakitic characteristics are interlayered with tholeiitic pillow basalts in the 2.7 Ga Penakacherla greenstone belt of eastern Dharwar craton. Two populations of basalt are present, a high-Mg# Ni (0.65–0.56, 106–52 ppm) and low-Mg# Ni (0.45–0.34, 32–13 ppm) counterpart; Nb spans 6.3–18 ppm relative to “normal” arc tholeiitic basalts, where Nb ∼3 ppm, and hence qualify as NEB. Basalts plot on the low-Ce/Yb trend of intraoceanic arcs, and have fractionated heavy rare-earth elements (HREE) indicative of melting with residual garnet at >90 km. Ratios of Nb/Ta (7.6 ± 0.7), Zr/Hf (44 ± 0.8), and Zr/Sm (27 ± 2.4) are systematically low, high, and similar to respective primitive mantle ratios of 17, 36, and 25, consistent with a mid-ocean ridge basalt-like mantle source in the sub-arc mantle wedge. Intermediate compositions are divided into high-K but low-Na (K2O 1.8–5.3; Na2O 0.5–2.1 wt.%) and low-K but high-Na (K2O 0.10–1.5; Na2O 4.1–5.6 wt.%) populations defining distinct magma series; accordingly, these are termed K-adakitic and Na-adakitic rocks, respectively. The Na-type has SiO2 ≥56 wt.%, MgO <3 wt.%, Mg# ∼0.5, Na2O ≥3.5 wt.%, K2O ≤3 wt.%, Yb ≤1.9 ppm, Cr ≥30 ppm, with slightly lower limits of Al2O3 ≥15 wt.% and La/Yb 7.5–8.2 versus ≥20, thus conforming to most criteria for Na-adakites. NEB are interpreted as melts of mantle wedge hybridized by adakitic melts having residual garnet; and Na-adakites are slab melts of low-Mg basalt in the garnet–amphibolite facies. K-adakitic flows are melts of mafic lower crust, or melts of lower crust delaminated into mantle wedge asthenosphere.

2021 ◽  
Vol 33 (2) ◽  
pp. 233-247
Author(s):  
Cliff S. J. Shaw

Abstract. Granulite xenoliths from the Quaternary West Eifel Volcanic Field in Germany record evidence of magmatism in the lower crust at the end of the Permian. The xenoliths sampled two distinct bodies: an older intrusion (ca. 264 Myr old) that contains clinopyroxene with flat, chondrite-normalised rare earth element (REE) profiles and a younger (ca. 253 Myr old) intrusion that crystallised middle-REE-rich clinopyroxene. The younger body is also distinguished based on the negative Sr, Zr and Ti anomalies in primitive mantle-normalised multi-element plots. REE-in-plagioclase–clinopyroxene thermometry records the magmatic temperature of the xenoliths (1100–1300 ∘C), whereas Mg-in-plagioclase and Zr-in-titanite thermometry preserve an equilibration temperature of ca. 800 ∘C. These temperatures, together with a model of the mineral assemblages predicted from the composition of one of the xenoliths, define the pressure of crystallisation as ∼1 GPa. The xenoliths also preserve a long history of reheating events whose age ranges from 220 to 6 Myr. The last of these events presumably led to breakdown of garnet; formation of symplectites of orthopyroxene, plagioclase and hercynite; and redistribution of heavy rare earth elements into clinopyroxene. The data from the West Eifel granulite xenoliths, when combined with the existing data from granulites sampled in the East Eifel, indicate that the lower crust has a long a complex history stretching from at least 1.6 Ga with intrusive events at ca. 410 and 260 Ma and reheating from the Triassic to late Miocene.


1998 ◽  
Vol 135 (5) ◽  
pp. 669-683 ◽  
Author(s):  
A. B. KAMPUNZU ◽  
P. AKANYANG ◽  
R. B. M. MAPEO ◽  
B. N. MODIE ◽  
M. WENDORFF

The c. 1.1 Ga Kgwebe metavolcanic rocks exposed in the northwest of Botswana are late Kibaran rocks. They represent a bimodal suite of Within-Plate low titanium-phosphorus (LTP) continental tholeiites and post-orogenic Within-Plate high-K rhyolites. The chemical compositions of the Kgwebe mafic rocks are characterized by low values of Ce/Pb (<10) and high La/Nb ratios (average c. 2, maximum 4). Mid-ocean ridge basalts (MORB)-normalized spidergrams show marked enrichment in mobile elements (Sr, K, Rb, Ba) and negative anomalies in Nb. These features suggest they may have originated in a mantle, enriched during a previous subduction event. The Kgwebe metarhyolites are marked by Y>60 ppm, Sr/Y<1, Rb/Th>20 and high K-contents. They cannot therefore be the product of melting of sediments or a subducting slab. It is inferred that they represent felsic magmas resulting from melting of Mesoproterozoic (Kibaran) calcalkaline rocks underplated in the middle and/or lower crust. The Kgwebe bimodal metavolcanic rocks pre-date the Neoproterozoic Ghanzi Group rocks which are correlated with the lower part of the Damara sequence. The chemical composition and field relations suggest that these metavolcanic rocks were emplaced during a late orogenic collision-associated extensional collapse. This collapse affected a crust thickened during the Kibaran orogeny in the Namaqua-Natal Belt of southwest Africa.


2021 ◽  
Author(s):  
Daniel Harlov ◽  
Daniel Dunkley ◽  
Edward Hansen ◽  
Ishwar-Kumar C ◽  
Vinod Samuel ◽  
...  

2017 ◽  
Vol 34 (1) ◽  
pp. 45 ◽  
Author(s):  
Elizard González-Becuar ◽  
Efrén Pérez-Segura ◽  
Ricardo Vega-Granillo ◽  
Luigi Solari ◽  
Carlos Manuel González-León ◽  
...  

Plutonic rocks of the Puerta del Sol area, in central Sonora, represent the extension to the south of the El Jaralito batholith, and are part of the footwall of the Sierra Mazatán metamorphic core complex, whose low-angle detachment fault bounds the outcrops of plutonic rocks to the west. Plutons in the area record the magmatic evolution of the Laramide arc and the Oligo-Miocene syn-extensional plutonism in Sonora. The basement of the area is composed by the ca. 1.68 Ga El Palofierral orthogneiss that is part of the Caborca block. The Laramide plutons include the El Gato diorite (71.29 ± 0.45 Ma, U-Pb), the El Pajarito granite (67.9 ± 0.43 Ma, U-Pb), and the Puerta del Sol granodiorite (49.1 ± 0.46 Ma, U-Pb). The younger El Oquimonis granite (41.78 ± 0.32 Ma, U-Pb) is considered part of the scarce magmatism that in Sonora records a transition to the Sierra Madre Occidental magmatic event. The syn-extensional plutons are the El Garambullo gabbro (19.83 ± 0.18 Ma, U-Pb) and the Las Mayitas granodiorite (19.2 ± 1.2 Ma, K-Ar). A migmatitic event that affected the El Palofierral orthogneiss, El Gato diorite, and El Pajarito granite between ca. 68 and 59 Ma might be related to the emplacement of the El Pajarito granite. The plutons are metaluminous to slightly peraluminous, with the exception of El Oquimonis granite, which is a peraluminous two-mica, garnet-bearing granite. They are mostly high-K calc-alkaline with nearly uniform chondrite-normalized REE and primitive-mantle normalized multielemental patterns that are characteristic of continental margin arcs and resemble patterns reported for other Laramide granites of Sonora. The Laramide and syn-extensional plutons also have Sr, Nd and Pb isotopic ratios that plot within the fields reported for Laramide granites emplaced in the Caborca terrane in northwestern and central Sonora. Nevertheless, and despite their geochemical affinity to continental magmatic arcs, the El Garambullo gabbro and Las Mayitas granodiorite are syn-extensional plutons that were emplaced at ca. 20 Ma during development of the Sierra Mazatán metamorphic core complex. The 40Ar/39Ar and K-Ar ages obtained for the El Palofierral orthogneiss, the Puerta del Sol granodiorite, the El Oquimonis granite, and the El Garambullo gabbro range from 26.3 ± 0.6 to 17.4 ± 1.0 Ma and are considered cooling ages associated with the exhumation of the metamorphic core complex.


2017 ◽  
Author(s):  
Scott R. Miller ◽  
◽  
Joseph G. Meert ◽  
Anthony F. Pivarunas ◽  
Anup K. Sinha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document