Pycnocrinus altilis, a new Late Ordovician channel-dwelling crinoid from southern Ontario

1987 ◽  
Vol 24 (5) ◽  
pp. 851-859 ◽  
Author(s):  
James D. Eckert

Pycnocrinus altilis n. sp. is described from the Upper Ordovician Georgian Bay Formation of Ontario. Closely related to P. dyeri (Meek), 1872, the cup of P. altilis is characterized by stellate ornamentation of plates comprising ridges bounded by deep subtriangular pits. Pycnocrinus altilis inhabited submarine channels in the prodeltaic regime of the Queenston deltaic complex and is inferred to have been anchored to the substrate by a distally coiled column.

1998 ◽  
Vol 35 (7) ◽  
pp. 827-831 ◽  
Author(s):  
David M Rudkin

A new genus and species of articulated scleritomous metazoan, Curviconophorus andersoni, is described on the basis of a unique specimen from the Late Ordovician Georgian Bay Formation of southern Ontario. The affinities of the organism remain obscure, although the overall morphology of component sclerites suggests a possible relationship with the Agmata, an extinct phylum-level group so far known with certainty only from the Cambrian. Curved, conical elements of the scleritome are preserved as internal moulds and yield no details of ultrastructure or primary composition, precluding detailed comparisons with the aggultinated, internally laminated sclerites of agmatans. Curviconophorus gen.nov. has a scleritome architecture similar to that of the Early Ordovician putative agmatan Dimorphoconus granulatus, though it has fewer elements that are strictly monomorphic.


1991 ◽  
Vol 28 (2) ◽  
pp. 266-282 ◽  
Author(s):  
Michael Kerr ◽  
Nicholas Eyles

The Late Ordovician Geogian Bay Formation of southern Ontario, Canada, comprises up to 250 m of grey to blue–grey shales interbedded with highly fossiliferous calcareous sandstones. These strata were deposited in equatorial paleolatitudes after 448 Ma in a shallow foreland basin created by overthrusting along the eastern margin of North America (the Taconic orogeny). The Georgian Bay Formation comprises the middle part of an upward-shallowing progradational sequence from deep-water transgressive shales of the underlying Whitby Formation to muddy tidal-flat sequences of the overlying Queenston Formation. Exposures in brickyard and river cuts near Toronto, and northwards along a narrow outcrop belt along the foot of the Niagara Escarpment, show laterally extensive (100 m+), sharp-based sheets of sandstone up to 1 m thick, with gutter casts and washed-out (hypichnial) trace fossils (dominantly Planolites and Paleophycus) on their lower bedding surfaces. Detailed examination of sandstone beds in outcrop and in three boreholes that penetrate the formation shows that the beds are composed internally of a basal fossil hash layer overlain by flat, hummocky, and wave-rippled divisions. Bed tops show a variety of wave-ripple forms and are heavily bioturbated (dominantly Bifungites, Conostichus, Diplocraterion, Didymaulichnus, Teichichnus). Sandstone sheets are interpreted as storm deposits (tempestites) resulting from tropical storms (hurricanes) transporting fine-grained suspended sediment from a delta plain onto a muddy shelf to the west.


2019 ◽  
Vol 56 (3) ◽  
pp. 235-244 ◽  
Author(s):  
Karem Azmy ◽  
Jisuo Jin

Dalmanelloid brachiopod shells were collected from the Upper Ordovician Lexington Formation (lower Katian) of Kentucky, Sheguindah Shale (middle Katian) on Manitoulin Island, Ontario, and the Stony Mountain Formation (upper Katian) in the Winnipeg area, Manitoba. They were investigated to test the hypothesis of paleo-latitudinal zonation of the shelly benthos. A multi-technique approach was applied to evaluate the petrographic and geochemical (isotopic and elemental) preservation of the secondary layer of shells. Preliminary conventional microscopy, cathodoluminescence (CL), and scanning electron microscopy (SEM) confirmed the retention of primary shell ultrastructure (prismatic low-Mg calcite). The geochemical diagenesis proxies (e.g., Sr, Mn, Fe, and ΣREE) show insignificant correlations with the δ18O and δ13C values, thus supporting the preservation of at least near-primary geochemical compositions. Among the three lots of shells, the mean δ18O value is the highest in those from the Lexington Formation (–4.5‰ ± 0.3‰ VPDB), lowest from the Stony Mountain Formation (–6.8‰ ± 0.4‰ VPDB), and intermediate from the Sheguindah Shale (–6.0‰ ± 0.8‰ VPDB). The relative gradient in δ18O increase is in agreement with the paleo-latitudinal gradient, with Kentucky in subtropical, southern Ontario in mid-tropical, and southern Manitoba in subequatorial latitudes. The Lexington Formation shells also have the highest mean δ13C value (0.8‰ ± 0.2‰ VPDB) and relatively high P contents (170 ± 27 ppm), suggesting higher organic productivity, which is consistent with previous interpretation of frequent upwelling of nutrient-rich cool waters along the southeastern margin of Laurentia during the Katian. The Lexington shells also have a lower mean Th/U (0.6 ± 0.6), which is consistent with blooming organic productivity that likely led to more consumption of oxygen in the water column.


2021 ◽  
pp. 1-22
Author(s):  
Zhihua Yang ◽  
Xiuchun Jing ◽  
Hongrui Zhou ◽  
Xunlian Wang ◽  
Hui Ren ◽  
...  

Abstract Upper Ordovician strata exposed from the Baiyanhuashan section is the most representative Late Ordovician unit in the northwestern margin of the North China Craton (NCC). In total, 1,215 conodont specimens were obtained from 24 samples through the Wulanhudong and Baiyanhuashan formations at the Baiyanhuashan section. Thirty-six species belonging to 17 genera, including Tasmanognathus coronatus new species, are present. Based on this material, three conodont biozones—the Belodina confluens Biozone, the Yaoxianognathus neimengguensis Biozone, and the Yaoxianognathus yaoxianensis Biozone—have been documented, suggesting that the Baiyanhuashan conodont fauna has a stratigraphic range spanning the early to middle Katian. The Baiyanhuashan conodont fauna includes species both endemic to North China and widespread in tropical zones, allowing a reassessment of the previous correlations of the Katian conodont zonal successions proposed for North China with those established for shallow-water carbonate platforms at low latitudes. UUID: http://zoobank.org/7cedbd4a-4f7a-4be6-912f-a27fd041b586


2008 ◽  
Vol 45 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Jan Ove R. Ebbestad ◽  
Christopher A. Stott

Shell repairs resulting from presumed failed predation are documented in gastropods from the Late Ordovician (Cincinnatian; Richmondian) mid-to-upper Kagawong Submember of the Georgian Bay Formation on Manitoulin Island, Ontario, Canada. The bryozoan–mollusc biota and associated sediments generally suggest nearshore, shallow (<10 m), low energy (lagoonal), and perhaps mesotrophic to eutrophic conditions. Two sample sets from this unit have been studied for shell repair. One of the more commonly applied estimates of shell repair frequencies involves division of the number of individuals with at least one scar by the total number of individuals in the sample (the Individuals with scars method). Using this calculation, 207 specimens of Lophospira trilineata Ulrich and Scofield yielded a shell repair frequency of 4.8%; in 28 specimens of Trochonemella sp. the shell repair frequency was 35.7%. Repairs in Trochonemella occur primarily in the larger size class, suggesting that a size refuge was achieved by this species. Low repair frequencies in L. trilineata suggest predation with a higher success rate or fewer encounters. This study demonstrates that the paradigm of a standardized low level of shell repair in Ordovician and Silurian gastropods is oversimplistic and a range of frequency rates can be expected.


Sign in / Sign up

Export Citation Format

Share Document