Patterns and correlates of movement and site fidelity in individually tagged young-of-the-year Atlantic salmon (Salmo salar)

2003 ◽  
Vol 60 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Stefán Ó Steingrímsson ◽  
James W.A Grant

The literature on stream fish movement offers diverse views on the patterns (restricted vs. nonrestricted), causes (competition vs. habitat use), and consequences (mobile fish of lower vs. equal fitness) of movement. We tagged 320 young-of-the-year Atlantic salmon (Salmo salar) (30.1–55.3 mm), using relatively noninvasive tagging (elastomers) and recovery (snorkeling) techniques, to test these alternative views. Most fish (mean = 63.8%) stayed in the study sites (10–120 m) throughout their respective study season (28–74 days). Of the resighted fish, 61.8% moved less than 1 m up- or down-stream and only three fish moved more than 10 m, causing extremely leptokurtic movement curves. Movement and site fidelity were weakly affected by habitat use and competition. Fish originally found in slow water moved farther than fish from fast water, whereas fish found at high population densities were more likely to disappear than fish from low densities. Finally, mobile fish grew as fast or faster than more sedentary fish, supporting the idea that movement can be advantageous and is not just a by-product of density-dependent population regulation.


2008 ◽  
Vol 65 (9) ◽  
pp. 1956-1964 ◽  
Author(s):  
Oscar Venter ◽  
James W.A. Grant ◽  
Michelle V. Noël ◽  
Jae-woo Kim

We tested three hypotheses used to explain the increase in young-of-the-year (YOY) Atlantic salmon ( Salmo salar ) density with habitat complexity: the territory-size, predator-refuge, and foraging-benefits hypotheses. We manipulated habitat complexity in three different treatments (boulder-removed, control, and boulder-added) at eight sites in Catamaran Brook and the Little Southwest Miramichi River, New Brunswick. The density of juvenile salmon was two times higher in the boulder-added treatment than in the other treatments. Our data were consistent with the territory-size hypothesis; visual isolation was highest and territory size was smallest in the boulder-added treatment, and salmon selected microhabitats to maximize their field of view. Our results showed partial support for the predator-refuge hypothesis; salmon in the boulder-added sites were closer to cover and showed a reduced reaction distance to a novel stimulus, but did not preferentially select microhabitats closer to cover. We found no direct support for the foraging-benefits hypothesis; however, there is indirect evidence that boulders may improve the growth potential of instream habitat. Our results suggest that YOY Atlantic salmon may be attracted to complex environments for the increased cover and that the decreased visibility of these sites causes a reduction in territory size, allowing a higher density of fish.



2007 ◽  
Vol 64 (8) ◽  
pp. 1069-1079 ◽  
Author(s):  
Julie Deschênes ◽  
Marco A Rodríguez ◽  
Pierre Bérubé

We used classification trees and regression trees to relate the incidence and density of juvenile Atlantic salmon (Salmo salar) to forestry activities measured at four spatial scales (subbasin and 8, 2, and 0.5 km radii upstream of study sites) and environmental features in 120 stream reaches of the Cascapedia River basin, Québec, Canada. At all scales, incidence increased with reach size and accessibility to the reach from the river mainstem. Incidence declined with areal coverage of logging at all scales, but only in larger reaches. The time horizon over which logging effects were detected increased with spatial scale. At all scales, density in salmon-bearing reaches increased with accessibility. Density in more accessible reaches was negatively related to logging over the preceding 9 years at the subbasin and 8 km scales, but no effects of logging on density were detected at the 2 and 0.5 km scales. Overall, apparent effects of logging activities on salmon incidence and density were mostly negative and strong, but were both markedly scale-dependent and conditional on environmental context.



1984 ◽  
Vol 41 (2) ◽  
pp. 377-380 ◽  
Author(s):  
P. M. Ryan

The catch per unit effort (CPUE) data of brook trout (Salvelinus fontinalis) and Atlantic salmon (Salmo salar) in fyke nets set in two small lakes in central Newfoundland were compared with population densities estimated with Schnabel multiple mark–recapture experiments each spring and fall from 1978 to 1982. The catchability of brook trout did not differ significantly between lakes or seasons, and CPUE was an index of the relative abundance of trout within and between lakes. In contrast, the catchability of Atlantic salmon differed greatly between lakes and varied seasonally, being greater in the spring but less in the fall than the catchability of brook trout. Comparisons of relative salmon abundance between lakes or of the relative abundance of brook trout to Atlantic salmon within or between lakes require a correction for seasonal differences in the catchability of salmon.



1987 ◽  
Vol 44 (1) ◽  
pp. 120-129 ◽  
Author(s):  
D. L. Morantz ◽  
R. K. Sweeney ◽  
C. S. Shirvell ◽  
D. A. Longard

This study was designed to define the microhabitats selected in summer by juvenile Atlantic salmon (Salmo salar). Curves were developed describing the preference of 880 young salmon for water velocity at the fish's position (nose velocity), mean water column velocity, total water depth, and stream substrate size. Study sites were chosen in six morphologically diverse streams in Nova Scotia and New Brunswick during 1982–84. Of the four variables measured, only nose velocity chosen by both fry and parr was not significantly different among years or rivers. Atlantic salmon fry (< 65 mm) most frequently selected nose velocities between 5 and 15 cm∙s−1, small parr (65–100 mm) between 5 and 25 cm∙s−1 and large parr (> 100 mm) between 5 and 35 cm∙s−1. Apparently, juvenile salmon utilized water depths and stream substrates which varied within tolerable limits according to their availability in conjunction with preferred water velocities. Significant differences in the body shape and size of the pectoral fin of Atlantic salmon parr in different rivers did not influence the selection of nose velocities within the range of flow conditions sampled.







1999 ◽  
Vol 56 (7) ◽  
pp. 1298-1306 ◽  
Author(s):  
Tammo P Bult ◽  
Stephen C Riley ◽  
Richard L Haedrich ◽  
R John Gibson ◽  
Jan Heggenes

We investigated habitat use of Atlantic salmon (Salmo salar) parr in experimental riverine enclosures made up of pool, riffle, and run habitats over a range of densities (0.1-1.25 fish·m-2) to test the implicit assumption in habitat modelling that habitat selection does not change with population density. Results indicated that habitat use changed with population density, with relatively more parr in pools and fewer in runs at higher population densities. Temperature influenced parr distribution, with relatively more parr in runs and fewer in riffles and pools at higher temperatures. Parr distribution was primarily affected by hydromorphological differences among pool, riffle, and run habitats. Effects of population density and temperature on use of pool, riffle, and run habitats were often as large as effects of hydromorphological differences among pool, riffle, and run habitats on fish distributions over the range of temperatures and densities observed. Results varied considerably, despite controlled experimental conditions. We concluded that habitat selection by juvenile Atlantic salmon parr may be density dependent and potentially quite variable.





Sign in / Sign up

Export Citation Format

Share Document