Food web interactions between larval bluegill (Lepomis macrochirus) and exotic zebra mussels (Dreissena polymorpha)

2004 ◽  
Vol 61 (3) ◽  
pp. 497-504 ◽  
Author(s):  
David F Raikow

Food web interactions between native larval bluegill (Lepomis macrochirus), exotic invasive zebra mussels (Dreissena polymorpha), and zooplankton were examined with a mesocosm experiment. Hatchling larval bluegill collected from nests were reared in the presence of size-structured populations of zebra mussels in 1500-L limnocorrals suspended in an artificial pond for 2 weeks. Chlorophyll a, other limnological variables, and zooplankton abundance and biomass (including copepod nauplii and rotifers) were monitored over time. During their first 2 weeks of life, larval fish reared in the presence of mussels grew 24% more slowly than fish reared alone. Differential growth rates can be explained by competition between mussels and bluegill for food in the form of microzooplankton. Also likely was an indirect competition via starvation of the zooplankton community as zebra mussels consumed phytoplankton. Either direct or indirect trophic competition between zebra mussels and obligate planktivores may result in ecological harm as zebra mussels spread throughout inland lakes of North America.

2010 ◽  
Vol 1 (2) ◽  
pp. 73-85 ◽  
Author(s):  
Jeffrey C. Jolley ◽  
David W. Willis ◽  
Richard S. Holland

Abstract Food availability may regulate fish recruitment, both directly and indirectly. The availability of zooplankton, especially to newly hatched larvae, is thought to be crucial to their early growth and survival. We examined stomach contents of larval bluegill Lepomis macrochirus and yellow perch Perca flavescens in Pelican Lake and Cameron Lake, Nebraska, in 2004 and 2005. We also determined zooplankton availability and calculated prey selection using Chesson's α. In addition, we investigated potential match–mismatch regulation of recruitment from 2004 to 2008. Bluegill positively selected copepod nauplii and Bosmina spp., and yellow perch often selected copepods. Abundant zooplankton populations were available for consumption. Matches of both larval bluegill and yellow perch abundance to zooplankton abundance were detected in all years; exact matches were common. Mismatches in predator and prey production were not observed. Predation by age-0 yellow perch on age-0 bluegill was not observed, even though yellow perch hatched 2 mo prior to bluegill. Given that zooplankton were abundant and well-timed to larval fish relative abundance over the time span of this study, the match–mismatch hypothesis alone may not fully account for observed recruitment variability in these populations. Environmental conditions may also affect recruitment and warrant further investigation.


2003 ◽  
Vol 60 (11) ◽  
pp. 1353-1368 ◽  
Author(s):  
Erik G Noonburg ◽  
Brian J Shuter ◽  
Peter A Abrams

The exotic zebra mussel (Dreissena polymorpha) has caused dramatic reductions in phytoplankton density in lakes with dense mussel populations. However, the indirect effects of this invader on other trophic groups have been inconsistent and difficult to interpret. In some lakes, zebra mussels appear to have had little effect on zooplankton density, despite decreasing the abundance of their phytoplankton prey. We analyze food web models to test hypothesized mechanisms for the absence of a strong effect of dreissenids on zooplankton. Our results suggest that neither reduced inedible algal interference with zooplankton filtering nor reduced phytoplankton self-shading is sufficient to explain the insensitivity of zooplankton populations to dreissenid competition. Instead, we show how the impact of benthic filter feeders can be influenced by the rate of mixing within a basin, which limits phytoplankton delivery to the benthos. We explore the predictions of a simple spatially structured model and demonstrate that differences in abiotic factors that control mixing can result in large differences in direct and indirect effects of zebra mussel filtering.


2021 ◽  
Author(s):  
Chase J. Rakowski ◽  
Mathew A. Leibold

AbstractTrophic cascades, or indirect effects of predators on non-adjacent lower trophic levels, are thought to pervade diverse ecosystems, though they tend to be stronger in aquatic ecosystems. Most research on freshwater trophic cascades focused on temperate lakes where Daphnia tend to dominate the zooplankton community, and these studies identified that Daphnia plays a key role in facilitating trophic cascades by linking fish to algae with strong food web interactions. However, Daphnia are rare or absent in most tropical and subtropical lowland freshwaters, and many invertebrate predators have received little attention in food web research despite being common and widespread. Therefore, we aimed to test whether trophic cascades are possible in small warmwater ponds where small invertebrates are the top predators and Daphnia are absent. We collected naturally occurring plankton communities from small fishless water bodies in central Texas and propagated them in replicate pond mesocosms. We removed zooplankton from some mesocosms, left the plankton community intact in others, and added one of two densities of the predaceous insect Neoplea striola to others. Following an incubation period we then compared biomasses of plankton groups to assess food web effects between the trophic levels including whether Neoplea caused a trophic cascade by reducing zooplankton. The zooplankton community became dominated by copepods which prefer large phytoplankton and exhibit a fast escape response. Perhaps due to these qualities of the copepods and perhaps due to slow consumption rates by Neoplea on key grazers, no food web effects were found other than zooplankton marginally reducing large phytoplankton. More research is needed to understand the behavior and ecology of Neoplea, but trophic cascades may generally be weak or absent in subtropical and tropical lowland freshwaters where Daphnia is rare.


1999 ◽  
Vol 56 (12) ◽  
pp. 2477-2486 ◽  
Author(s):  
R Ian Perry ◽  
Peter A Thompson ◽  
David L Mackas ◽  
Paul J Harrison ◽  
Douglas R Yelland

Surveys were conducted in spring 1992 to examine the use of 13C/12C ratios to differentiate pelagic food webs and to trace food web interactions between adjacent continental shelf and slope/deep ocean environments off southwestern British Columbia, Canada. Salinity was used to define shelf or slope/deep ocean water masses and their productivity conditions because eddies and meanders at the shelf break were observed to draw water off the shelf. The 13C/12C ratio of plankton was related to the mean upper layer (0-50 m) salinity. 13C abundance was enriched (relative to 12C) in the shelf water mass compared with the slope water mass. This enrichment persisted up the food web from particulate organic matter through three size-classes of zooplankton to larval fish. The cross-shelf spatial scale separating these food webs, as determined from spatial semivariograms of 13C/12C and the upper layer mean salinity, was 40-45 km, similar to the Rossby radius for eddies at this location (50 km). Larval fish may provide a means to monitor exchanges of plankton between geographically adjacent food webs if time scales for incorporation of new isotope signatures from diets into tissues are determined.


1994 ◽  
Vol 51 (4) ◽  
pp. 913-922 ◽  
Author(s):  
Mary T. Bremigan ◽  
Roy A. Stein

Small gape of zooplanktivorous larval fish limits their prey size; yet, within constraints set by gape, zooplankton size eaten influences larval growth and ultimately survival. To determine if optimal zooplankton size varied among fish species with different gapes, we conducted foraging trials with larval bluegill (Lepomis macrochirus, 10–26 mm TL) and gizzard shad (Dorosoma cepedianum, 18–31 mm TL). Larvae (n = 10) fed for 1 h on zooplankton assemblages that varied in size, after which all larvae and remaining zooplankton were preserved. Larval gape was measured; both larval gut contents and available zooplankton were quantified. Bluegill, the large-gaped species, fed on larger zooplankton than did gizzard shad with similar gapes. Further, larger bluegill fed on progressively larger zooplankton whereas all gizzard shad ate small prey (< 0.60 mm). As available zooplankton size increased, bluegill prey size increased whereas gizzard shad consistently selected small prey. Therefore, differences in zooplankton size among lakes could differentially affect foraging success of larval fishes. In particular, systems with small zooplankton may represent ideal foraging environments for gizzard shad whereas lakes with large zooplankton may favor larval bluegill. If differential larval foraging translates to differential growth and survival, zooplankton size could influence recruitment success and ultimately fish community composition.


2001 ◽  
Vol 58 (7) ◽  
pp. 1430-1441 ◽  
Author(s):  
Nasseer Idrisi ◽  
Edward L Mills ◽  
Lars G Rudstam ◽  
Donald J Stewart

We analyzed a data series on nutrients, phytoplankton, zooplankton, and young-of-the-year fish from Oneida Lake, New York, to test several hypotheses relating the response of the pelagic food web to grazing by zebra mussels (Dreissena polymorpha). System-wide grazing rates increased by one to two orders of magnitude after zebra mussel introduction. The most dramatic change associated with dreissenid grazing was increased water clarity and overall decrease in algal biovolume and Chl a. Contrary to predictions, primary production did not decline. We attribute the lack of whole water column decline in primary productivity to the compensating effect of increased water clarity resulting in deeper penetration of photosynthetically active radiation. We observed no change in total or dissolved phosphorus concentrations. Although algal standing crop declined, Daphnia spp. biomass and production did not, but dominance shifted from Daphnia galeata mendotae to Daphnia pulicaria. Consistent with our findings in the lower food web, we found no evidence that zebra mussels had a negative impact on young yellow perch (Perca flavescens) growth, biomass, or production. Thus, despite the order of magnitude increase in grazing rates and associated decrease in algal biomass, pelagic production at primary, secondary, and tertiary levels did not decline in association with zebra mussels.


Author(s):  
Christer Brönmark ◽  
Lars-Anders Hansson

The chapter introduces the reader to the book structure, including the overall topics the abiotic frame, the organisms, biotics, food web interactions and biodiversity and environmental threats. In addition to laying out the structure, this chapter brings up some overarching concepts such as the niche, generalists versus specialists and factors determining the distribution of organisms in natural ecosystems.


Sign in / Sign up

Export Citation Format

Share Document