On Evaluating Measures to Rehabilitate Lake Trout (Salvelinus namaycush) of Lake Superior

1980 ◽  
Vol 37 (11) ◽  
pp. 2057-2062 ◽  
Author(s):  
A. H. Lawrie ◽  
W. MacCallum

The Lake Superior lake trout (Salvelinus namaycush) population is being rebuilt following its collapse in the early 1950s. Estimates are presented of the contributions to this recovery provided directly by the artificial recruitment of hatchery fish, a demonstrable amelioration in mortality rates and a resurgence, lately, of natural recruitment. Of the increased lake trout abundance, 55% on the average was owing to trebling the planting density, 40% to improved survival, and 5% to increasing recruitment of native lake trout. The precise contribution of the sea lamprey (Petromyzon marinus) control program could not be defined for lack of sufficient early data.Key words: lake trout, sea lamprey, rehabilitation, natural recruitment, hatchery stocking


1980 ◽  
Vol 37 (11) ◽  
pp. 2074-2080 ◽  
Author(s):  
Bruce L. Swanson ◽  
Donald V. Swedberg

The Gull Island Reef lake trout (Salvelinus namaycush) population was one of the few in Lake Superior that was not annihilated by the combined effects of excessive fishing and sea lamprey (Petromyzon marinus) predation. Following control of the lamprey in the early 1960s, this population of lake trout began a slow but steady increase in the average age and numbers of lake trout. Total annual mortality rates for spawning lake trout were 32% for age VI fish, 48% for ages VII–VIII, and 75% for ages IX and older. These total mortality rates included a 7.3% exploitation rate u, a 20% natural mortality n, and annual lamprey-induced mortalities of 6% for ages V–VI, 24%, for ages VII–VIII, and 56% for ages IX and older fish. The estimated number of lake trout eggs deposited annually on Gull Island Reef from 1964 to 1979 ranged from 3.3 million eggs in 1965 to 28 million eggs in 1979, with a mean of 9 million eggs per year. At present levels of lamprey predation, the estimated egg to spawning fish return rate on Gull Island Reef is 0.18%.Key words: lake trout, sea lamprey, survival, population structure, egg deposition



1980 ◽  
Vol 37 (11) ◽  
pp. 2063-2073 ◽  
Author(s):  
Richard L. Pycha

Total mortality rates of lake trout (Salvelinus namaycush) of age VII and older from eastern Lake Superior were estimated from catch curves of age distributions each year in 1968–78. The instantaneous rate of total mortality Z varied from 0.62 to 2.31 in close synchrony with sea lamprey (Petromyzon marinus) wounding rates on lake trout. The regression of transformed Z on the index of lamprey wounding, accounted for over 89% of the variation in lake trout mortality (r2 = 0.893). An iterative method of estimating rates of exploitation u, instantaneous rates of fishing mortality F, K (a constant relating sample catch per unit effort to population size), instantaneous normal natural mortality rate M, and instantaneous rate of mortality due to sea lamprey predation L from the sample catch per unit effort and total catch by the fishery is presented. A second method using the results of a 1970–71 tagging study to estimate the mean F in 1970–77 yielded closely similar results to the above and is presented as corroboration. The estimates of u, F, and M appear to be reasonable. F ranged from 0.17 in 1974 to 0.42 in 1969 and M was estimated at 0.26. L varied from 0.21 in 1974 to 1.70 in 1968. Management implications of various policies concerning sea lamprey control, exploitation, and stocking are discussed.Key words: lake trout, sea lamprey, lamprey control, mortality, predation, Lake Superior, fishery, management



1980 ◽  
Vol 37 (11) ◽  
pp. 1861-1871 ◽  
Author(s):  
John W. Heinrich ◽  
Jerry G. Weise ◽  
Bernard R. Smith

Biological characteristics of adult sea lampreys, Petromyzon marinus, in the Great Lakes changed in response to lamprey and prey abundance and the chemical control program. Sea lampreys collected as early as 1947, through 1978, from southern Lake Superior, northwestern Lake Michigan, the Ocqueoc River and Canadian shore of Lake Huron, and the Humber River of Lake Ontario were analyzed. Generally, abundance of sea lampreys peaked in each lake before the chemical control program began. The annual mean lengths and weights were relatively low when lampreys were abundant and increased as the numbers were reduced by the control efforts. As an indication of the change in sea lamprey weight per unit change in length, annual log10 weight on log10 length equations were solved at the arbitrary length of 410 mm. The values were plotted against years for each lake and interpreted with respect to chemical treatment periods. All slopes were negative before the control period and positive thereafter. Sea lamprey lengths and weights were low when fish stocks in the Great Lakes were near depletion. As salmonids again became abundant through stocking, lampreys grew larger. In Lake Superior, where detailed records on lake trout abundance have been available since 1959, a significant relation exists between the changes in the sea lamprey estimated weight values at 410 mm and in lake trout abundance (P < 0.01). Male sea lampreys were the dominant sex when populations of the parasite were high. A shift to a preponderance of females occurred as lamprey abundance declined.Key words: Petromyzon marinus, Salvelinus namaycush, abundance, sex ratio, weight–length relationship, chemical control



1980 ◽  
Vol 37 (11) ◽  
pp. 2047-2051 ◽  
Author(s):  
LaRue Wells

Lake trout (Salvelinus namaycush) was exterminated in Lake Michigan by the mid-1950s as a result of the combined effects of an intensive fishery and predation by the sea lamprey (Petromyzon marinus). The widespread application of lampricide in tributary streams had greatly reduced the abundance of lampreys by the early 1960s, and a program to restore self-sustaining populations of lake trout through stocking of yearlings and fingerlings was initiated in 1965. Although the hatchery-reared fish spawned widely in Lake Michigan each year after 1970, no progeny were observed except in an isolated area in Grand Traverse Bay. During 1971–78, sea lamprey abundance was generally greater in Wisconsin than in other parts of the lake. However, the rate of occurrence of sea lamprey wounds on lake trout dropped dramatically there in 1978 after the Peshtigo River, a tributary to Green Bay, was treated with lampricide. Application of Lake Michigan wounding rates to a regression model relating mortality to lamprey wounding developed from Lake Superior data, yielded lamprey-induced mortality estimates in 1977 of 5% in Michigan plus Indiana (combined) and 31% in Wisconsin; corresponding estimates for 1978 were 5 and 15%.Key words: lake trout, sea lamprey predation, abundance, Lake Michigan



1980 ◽  
Vol 37 (11) ◽  
pp. 1989-2006 ◽  
Author(s):  
Everett Louis King Jr.

Criteria for the classification of marks inflicted by sea lamprey (Petromyzon marinus) into nine categories were developed from laboratory studies in an attempt to refine the classification system used in field assessment work. These criteria were based on characteristics of the attachment site that could be identified under field conditions by unaided visual means and by touching the attachment site. Healing of these marks was somewhat variable and was influenced by the size of lamprey, duration of attachment, severity of the wound at lamprey detachment, season and water temperature, and by other less obvious factors. Even under laboratory conditions staging of some wounds was difficult, especially at low water temperatures. If these criteria are to be used effectively and with precision in the field, close examination of individual fish may be required. If the feeding and density of specific year-classes of sea lampreys are to be accurately assessed on an annual basis, close attention to the wound size (as it reflects the size of the lamprey's oral disc) and character of wounds on fish will be required as well as consideration of the season of the year in which they are observed.Key words: sea lamprey, attack marks, lake trout, Great Lakes



2005 ◽  
Vol 62 (10) ◽  
pp. 2354-2361 ◽  
Author(s):  
Jeffrey C Jorgensen ◽  
James F Kitchell

Fish community objectives for Lake Superior call for restoration such that it resembles its historical species composition, to the extent possible, yet allow for supplementation of naturalized Pacific salmonids (Oncorhynchus spp.). To achieve these goals, managers strive to control the sea lamprey (Petromyzon marinus) to levels that cause insignificant (<5%) mortality to host species. While control efforts have been successful, sea lamprey size has increased during the control period. We analyzed long-term sea lamprey size trends and found a significant increase from 1961 to 2003 (F = 36.76, p < 0.001, R2 = 0.473). A local regression revealed two significant size increase periods. We used Bayesian model averaging to find the relationship between sea lamprey size and the stocking of salmonids (lean lake trout (Salvelinus namaycush) and Pacific salmon). Bayesian model averaging identified 91 models, and several regressors were common features in many of the models. Sea lamprey weight was related to stocked lake trout lagged 3, 9, 11, and 13 years, and stocked Pacific salmon lagged 4 years. If sea lampreys can achieve larger sizes attached to Pacific salmonid hosts, and thus inflict more damage, there may be a trade-off for managers in achieving the fish community objectives for Lake Superior.



1980 ◽  
Vol 37 (11) ◽  
pp. 2133-2145 ◽  
Author(s):  
Carl J. Walters ◽  
Greg Steer ◽  
George Spangler

Sustained yields, declines, and recovery of lake trout (Salvelinus namaycush) can be explained by a simple model that hypothesizes normal population regulation through density dependent body growth, coupled with depensatory lamprey mortality. The model indicates that either lamprey or fishing alone could have caused the Lake Superior decline, though they apparently operated in concert. The presence of depensatory lamprey mortality leads to a "cliff edge" in the system's dynamics, such that catastrophic changes may be repeated in the future. It is not unlikely that Lake Superior is on the verge of a second collapse. Options for dealing with potential disasters include conservative harvesting policies, development of more sensitive monitoring indicators, and modified stocking policies that may speed the coevolution of a viable lamprey/trout association.Key words: lake trout, sea lamprey, simulation, Great Lakes, policy analysis



1988 ◽  
Vol 45 (8) ◽  
pp. 1406-1410 ◽  
Author(s):  
Roger A. Bergstedt ◽  
Clifford P. Schneider

During 1982–85, 89 dead fake trout (Salvelinus namaycush) were recovered with bottom trawls in U.S. waters of Lake Ontario: 28 incidentally during four annual fish-stock assessment surveys and 61 during fall surveys for dead fish. During the assessment surveys, no dead lake trout were recovered in April–June, one was recovered in August, and 27 were recovered in October or November, implying that most mortality from causes other than fishing occurred in the fall. The estimated numbers of dead lake trout between the 30- and 100-m depth contours in U.S. waters ranged from 16 000 (0.08 carcass/ha) in 1983 to 94 000 (0.46 carcass/ha) in 1982. Of 76 carcasses fresh enough to enable recognition of sea lamprey (Petromyzon marinus) wounds, 75 bore fresh wounds. Assuming that sea lamprey wounding rates on dead fish were the same as on live ones of the same length range (430–740 mm), the probability of 75 of the 76 dead lake trout bearing sea lamprey wounds was 3.5 × 10−63 if death was independent of sea lamprey attack, thus strongly implicating sea lampreys as the primary cause of death of fish in the sample. The recovery of only one unwounded dead lake trout also suggested that natural mortality from causes other than sea lamprey attacks is negligible.



1980 ◽  
Vol 37 (11) ◽  
pp. 2052-2056 ◽  
Author(s):  
J. D. Moore ◽  
T. J. Lychwick

Increased sea lamprey (Petromyzon marinus) abundance in Green Bay during 1977 is documented utilizing sea lamprey counts and lake trout (Salvelinus namaycush) wounding as methods of measurement. Since lake trout rehabilitation began in 1965, sea lamprey predation has been consistently higher in Green Bay and Northern Lake Michigan than other areas of the lake. It appears that increased sea lamprey predation in Green Bay, above the former high levels, resulted in decreased abundance and increased mortality of lake trout. The increase in lampreys is related to the colonization of the Peshtigo River, Marinette County, Wisconsin.Key words: Green Bay, sea lamprey increases, Peshtigo River, lake trout, increased mortality



2005 ◽  
Vol 62 (10) ◽  
pp. 2343-2353 ◽  
Author(s):  
Jeffrey C Jorgensen ◽  
James F Kitchell

Landlocked Lake Superior sea lampreys (Petromyzon marinus) cause a significant but uncertain amount of mortality on host species. We used a sea lamprey bioenergetics model to examine the scope of host sizes vulnerable to death as a consequence of sea lamprey feeding and incorporated the bimodal lake-ward migration of parasitic sea lampreys. At their peak feeding rate and maximum size (P = 1.0, proportion of maximum consumption), spring migrants were capable of killing lean lake trout (Salvelinus namaycush) hosts ≤ 2.0 kg, which was larger than fall migrants (1.8 kg). Spring migrants feeding on Pacific salmon (coho (Oncorhynchus kisutch), Chinook (Oncorhynchus tshawytscha), and steelhead (Oncorhynchus mykiss)) killed hosts ≤ 2.0 kg, but fall migrants killed hosts as large as 2.8 kg. Although there is no direct empirical evidence, bioenergetics modeling suggests that it is plausible that some of the largest sea lampreys in Lake Superior spent more than one summer as parasites. Two-summer parasites readily attained sizes of sea-run adult anadromous sea lampreys and killed hosts from 3 to >5.5 kg in size. The maximum upper limit number of 2-kg hosts killed by two-summer parasites was nearly twice that of one-summer parasites.



Sign in / Sign up

Export Citation Format

Share Document