sea lampreys
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 19)

H-INDEX

38
(FIVE YEARS 2)

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1174
Author(s):  
Daniel Sobrido-Cameán ◽  
Luis Alfonso Yáñez-Guerra ◽  
Alexandre Deber ◽  
María Celina Rodicio ◽  
Antón Barreiro-Iglesias

Kisspeptin peptides play major roles in the regulation of reproduction and puberty onset in mammals. While most mammals only have one kisspeptin gene, other jawed vertebrates present two or three genes. Recent data also revealed the presence of two genes in lampreys (jawless vertebrates). However, apart from gene sequence data, there is almost no information on the kisspeptinergic system of lampreys. Here, we report phylogenetic and cluster-based analyses showing that the duplication of the ancestral kisspeptin gene occurred before the separation of jawless and jawed vertebrates. We also studied the expression of the kisspeptin transcripts in the brain of post-metamorphic juveniles and upstream migrating adult sea lampreys. Our in situ hybridization results revealed expression of kisspeptin 1 in hypothalamic neurons, which indicates that the hypothalamic expression of kisspeptins is an ancestral character in vertebrates. We also observed the presence of kisspeptin 1 expressing neurons in the paratubercular (posterior tubercle) nucleus of the diencephalon. This is the first description of the presence of kisspeptin 1 expressing neurons in this brain region in any vertebrate. We did not detect expression of kisspeptin 2 in the juvenile or adult sea lamprey brain with in situ hybridization. Our data provides an anatomical basis to study the role of kisspeptin 1 in the hypothalamic-pituitary system of lampreys and the contribution of diencephalic kisspeptinergic neurons to different circuits of the lamprey brain.


Author(s):  
Jill Wingfield ◽  
Cory Brant ◽  
Randy Eshenroder ◽  
Marc Gaden ◽  
Andrea Miehls ◽  
...  
Keyword(s):  

Author(s):  
Ted J. Treska ◽  
Mark P. Ebener ◽  
Gavin C. Christie ◽  
Jean V. Adams ◽  
Michael J. Siefkes
Keyword(s):  

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 978
Author(s):  
Daniel Sobrido-Cameán ◽  
Ramón Anadón ◽  
Antón Barreiro-Iglesias

In this study, we analyzed the organization of urocortin 3 (Ucn3)-expressing neuronal populations in the brain of the adult sea lamprey by means of in situ hybridization. We also studied the brain of larval sea lampreys to establish whether this prosocial neuropeptide is expressed differentially in two widely different phases of the sea lamprey life cycle. In adult sea lampreys, Ucn3 transcript expression was observed in neurons of the striatum, prethalamus, nucleus of the medial longitudinal fascicle, torus semicircularis, isthmic reticular formation, interpeduncular nucleus, posterior rhombencephalic reticular formation and nucleus of the solitary tract. Interestingly, in larval sea lampreys, only three regions showed Ucn3 expression, namely the prethalamus, the nucleus of the medial longitudinal fascicle and the posterior rhombencephalic reticular formation. A comparison with distributions of Ucn3 in other vertebrates revealed poor conservation of Ucn3 expression during vertebrate evolution. The large qualitative differences in Ucn3 expression observed between larval and adult phases suggest that the maturation of neuroregulatory circuits in the striatum, torus semicircularis and hindbrain chemosensory systems is closely related to profound life-style changes occurring after the transformation from larval to adult life.


Author(s):  
W. Paul Sullivan ◽  
Dale P. Burkett ◽  
Michael A. Boogaard ◽  
Lori A. Criger ◽  
Christopher E. Freiburger ◽  
...  

Data ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 54
Author(s):  
Blanca Fernández-López ◽  
Natividad Pereiro ◽  
Anunciación Lafuente ◽  
María Rodicio ◽  
Antón Barreiro-Iglesias

We used high-performance liquid chromatography (HPLC) methods to quantify aspartate, GABA, and glutamine levels in the spinal cord of larval sea lampreys following a complete spinal cord injury. Mature larval sea lampreys recover spontaneously from a complete spinal cord transection and the changes in neurotransmitter systems after spinal cord injury might be related to their amazing regenerative capabilities. The data presented here show the concentration of the aminoacidergic neurotransmitters GABA (and its precursor glutamine) and aspartate in the spinal cord of control (non-injured) and 2-, 4-, and 10-week post-lesion animals. Statistical analyses showed that GABA and aspartate levels significantly increase in the spinal cord four weeks after a complete spinal cord injury and that glutamine levels decrease 10 weeks after injury as compared to controls. These data might be of interest to those studying the role of neurotransmitters and neuromodulators in recovery from spinal cord injury in vertebrates.


Author(s):  
Paula Schirrmacher ◽  
Christina C. Roggatz ◽  
David M. Benoit ◽  
Jörg D. Hardege

AbstractWith carbon dioxide (CO2) levels rising dramatically, climate change threatens marine environments. Due to increasing CO2 concentrations in the ocean, pH levels are expected to drop by 0.4 units by the end of the century. There is an urgent need to understand the impact of ocean acidification on chemical-ecological processes. To date, the extent and mechanisms by which the decreasing ocean pH influences chemical communication are unclear. Combining behaviour assays with computational chemistry, we explore the function of the predator related cue 2-phenylethylamine (PEA) for hermit crabs (Pagurus bernhardus) in current and end-of-the-century oceanic pH. Living in intertidal environments, hermit crabs face large pH fluctuations in their current habitat in addition to climate-change related ocean acidification. We demonstrate that the dietary predator cue PEA for mammals and sea lampreys is an attractant for hermit crabs, with the potency of the cue increasing with decreasing pH levels. In order to explain this increased potency, we assess changes to PEA’s conformational and charge-related properties as one potential mechanistic pathway. Using quantum chemical calculations validated by NMR spectroscopy, we characterise the different protonation states of PEA in water. We show how protonation of PEA could affect receptor-ligand binding, using a possible model receptor for PEA (human TAAR1). Investigating potential mechanisms of pH-dependent effects on olfactory perception of PEA and the respective behavioural response, our study advances the understanding of how ocean acidification interferes with the sense of smell and thereby might impact essential ecological interactions in marine ecosystems.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0247884
Author(s):  
Hongyang Shi ◽  
Christopher M. Holbrook ◽  
Yunqi Cao ◽  
Nelson Sepúlveda ◽  
Xiaobo Tan

Species-specific monitoring activities represent fundamental tools for natural resource management and conservation but require techniques that target species-specific traits or markers. Sea lamprey, a destructive invasive species in the Laurentian Great Lakes and conservation target in North America and Europe, is among very few fishes that possess and use oral suction, yet suction has not been exploited for sea lamprey control or conservation. Knowledge of specific characteristics of sea lamprey suction (e.g., amplitude, duration, and pattern of suction events; hereafter ‘suction dynamics’) may be useful to develop devices that detect, record, and respond to the presence of sea lamprey at a given place and time. Previous observations were limited to adult sea lampreys in static water. In this study, pressure sensing panels were constructed and used to measure oral suction pressures and describe suction dynamics of juvenile and adult sea lampreys at multiple locations within the mouth and in static and flowing water. Suction dynamics were largely consistent with previous descriptions, but more variation was observed. For adult sea lampreys, suction pressures ranged from –0.6 kPa to –26 kPa with 20 s to 200 s between pumps at rest, and increased to –8 kPa to –70 kPa when lampreys were manually disengaged. An array of sensors indicated that suction pressure distribution was largely uniform across the mouths of both juvenile and adult lampreys; but some apparent variation was attributed to obstruction of sensing portal holes by teeth. Suction pressure did not differ between static and flowing water when water velocity was lower than 0.45 m/s. Such information may inform design of new systems to monitor behavior, distribution and abundance of lampreys.


Author(s):  
Jean V. Adams ◽  
Oana Birceanu ◽  
W. Lindsay Chadderton ◽  
Michael L. Jones ◽  
Jesse M. Lepak ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document