host mortality
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 52)

H-INDEX

33
(FIVE YEARS 3)

Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 89
Author(s):  
Cory Penca ◽  
Nicholas C. Goltz ◽  
Amanda C. Hodges ◽  
Norman C. Leppla ◽  
Joseph E. Eger ◽  
...  

The mass rearing of hymenopteran egg parasitoids requires an abundant supply of host eggs. The onset of reproductive diapause and subsequent decline in egg production poses a challenge for parasitoid rearing when using host colonies augmented by field-collected insects. We investigated the application of pyriproxyfen, a juvenile hormone analog, to induce oviposition in diapausing adult kudzu bugs, Megacopta cribraria (Fabricius) (Heteroptera: Plataspidae), and the use of eggs produced by pyriproxyfen-treated kudzu bugs to rear the egg parasitoid, Paratelenomus saccharalis (Dodd) (Hymenoptera: Scelionidae). The effects of pyriproxyfen and photoperiod treatments on host mortality, egg production, and rates of parasitoid eclosion from the eggs were used to calculate the parasitoid yield for the different treatment regimes. A combination of pyriproxyfen and a long-day photoperiod increased the parasitoid yield by 87% compared to acetone and a long-day photoperiod. The general applicability of JH-analog mediated egg production for parasitoid rearing is discussed.


2022 ◽  
Author(s):  
Fang Qin ◽  
Sen Du ◽  
Zefeng Zhang ◽  
Hanqi Ying ◽  
Ying Wu ◽  
...  

AbstractViruses play critical roles in influencing biogeochemical cycles and adjusting host mortality, population structure, physiology, and evolution in the ocean. Marine viral communities are composed of numerous genetically distinct subfamily/genus-level viral groups. Among currently identified viral groups, the HMO-2011-type group is known to be dominant and broadly distributed. However, only four HMO-2011-type cultivated representatives that infect marine SAR116 and Roseobacter strains have been reported to date, and the genetic diversity, potential hosts, and ecology of this group remain poorly elucidated. Here, we present the genomes of seven HMO-2011-type phages that were isolated using four Roseobacter strains and one SAR11 strain, as well as additional 207 HMO-2011-type metagenomic viral genomes (MVGs) identified from various marine viromes. Phylogenomic and shared-gene analyses revealed that the HMO-2011-type group is a subfamily-level group comprising at least 10 discernible genus-level subgroups. Moreover, >2000 HMO-2011-type DNA polymerase sequences were identified, and the DNA polymerase phylogeny also revealed that the HMO-2011-type group contains diverse subgroups and is globally distributed. Metagenomic read-mapping results further showed that most HMO-2011-type phages are prevalent in global oceans and display distinct geographic distributions, with the distribution of most HMO-2011-type phages being associated with temperature. Lastly, we found that members in subgroup IX, represented by pelagiphage HTVC033P, were among the most abundant HMO-2011-type phages, which implies that SAR11 bacteria are crucial hosts for this viral group. In summary, our findings substantially expand current knowledge regarding the phylogenetic diversity, evolution, and distribution of HMO-2011-type phages, highlighting HMO-2011-type phages as major ecological agents that can infect certain key bacterial groups.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shannon Holt ◽  
Naomi Cremen ◽  
Julia Grassl ◽  
Paul Schmid-Hempel ◽  
Boris Baer

Honey bees can host a remarkably large number of different parasites and pathogens, and some are known drivers of recent declines in wild and managed bee populations. Here, we studied the interactions between the fungal pathogen Nosema apis and seminal fluid of the Western honey bee (Apis mellifera). Honey bee seminal fluid contains multiple antimicrobial molecules that kill N. apis spores and we therefore hypothesized that antimicrobial activities of seminal fluid are genetically driven by interactions between honey bee genotype and different N. apis strains/ecotypes, with the virulence of a strain depending on the genotype of their honey bee hosts. Among the antimicrobials, chitinases have been found in honey bee seminal fluid and have the predicted N. apis killing capabilities. We measured chitinase activity in the seminal fluid of eight different colonies. Our results indicate that multiple chitinases are present in seminal fluid, with activity significantly differing between genotypes. We therefore pooled equal numbers of N. apis spores from eight different colonies and exposed subsamples to seminal fluid samples from each of the colonies. We infected males from each colony with seminal fluid exposed spore samples and quantified N. apis infections after 6 days. We found that host colony had a stronger effect compared to seminal fluid treatment, and significantly affected host mortality, infection intensity and parasite prevalence. We also found a significant effect of treatment, as well as a treatment × colony interaction when our data were analyzed ignoring cage as a blocking factor. Our findings provide evidence that N. apis-honey bee interactions are driven by genotypic effects, which could be used in the future for breeding purposes of disease resistant or tolerant honey bee stock.


Author(s):  
Astrid Kruitwagen ◽  
Leo Beukeboom ◽  
Bregje Wertheim ◽  
Sander van Doorn

The invasion of a novel host species can create a mismatch in host choice and offspring survival (performance) when native parasitoids attempt to exploit the invasive host without being able to circumvent its resistance mechanisms. Invasive hosts can therefore act as evolutionary trap reducing parasitoids’ fitness and this may eventually lead to their extinction. Yet, escape from the trap can occur when parasitoids evolve behavioural avoidance or a physiological strategy compatible with the trap host, resulting in either host-range expansion or a complete host-shift. We developed an individual based model to investigate which conditions promote parasitoids to evolve behavioural preference that matches their performance, including host-trap avoidance, and which conditions lead to adaptations to the unsuitable hosts. One important aspect of these conditions was reduced host survival during incompatible interaction, where a failed attempt by a parasitoid resulted in host killing. This non-reproductive host mortality had a strong influence on the likelihood of establishment of novel host-parasitoid relationship. Killing unsuitable hosts can constrain adaptation under conditions which in fact promoted adaptation when parasitoids would leave the trap host unharmed and survive parasitoid attack. Moreover, our model revealed that host-search efficiency and genetic variation in host-preference play a key role in the likelihood that parasitoids will include the suboptimal host in their host range, or will evolve behavioural avoidance resulting in specialization and host-range conservation, respectively. Hence, invasive species might change the evolutionarily trajectory of native parasitoid species, which is important for predicting biocontrol ability of native parasitoids towards novel hosts.


2021 ◽  
Vol 102 (11) ◽  
Author(s):  
Allyson M. Ray ◽  
Sheldon L. Davis ◽  
Jason L. Rasgon ◽  
Christina M. Grozinger

Understanding how vectors alter the interactions between viruses and their hosts is a fundamental question in virology and disease ecology. In honey bees, transmission of deformed wing virus (DWV) by parasitic Varroa mites has been associated with elevated disease and host mortality, and Varroa transmission has been hypothesized to lead to increased viral titres or select for more virulent variants. Here, we mimicked Varroa transmission by serially passaging a mixed population of two DWV variants, A and B, by injection through in vitro reared honey bee pupae and tracking these viral populations through five passages. The DWV-A and DWV-B variant proportions shifted dynamically through passaging, with DWV-B outcompeting DWV-A after one passage, but levels of both variants becoming equivalent by Passage 5. Sequencing analysis revealed a dominant, recombinant DWV-B strain (DWV-A derived 5′ IRES region with the rest of the genome DWV-B), with low nucleotide diversity that decreased through passaging. DWV-A populations had higher nucleotide diversity compared to DWV-B, but this also decreased through passaging. Selection signatures were found across functional regions of the DWV-A and DWV-B genomes, including amino acid mutations in the putative capsid protein region. Simulated vector transmission differentially impacted two closely related viral variants which could influence viral interactions with the host, demonstrating surprising plasticity in vector-host-viral dynamics.


2021 ◽  
Author(s):  
David A Kennedy

Why would a pathogen evolve to kill its hosts when killing a host ends a pathogen's own opportunity for transmission? A vast body of scientific literature has attempted to answer this question using "trade-off theory," which posits that host mortality persists due to its cost being balanced by benefits of other traits that correlate with host mortality. The most commonly invoked trade-off is the mortality-transmission trade-off, where increasingly harmful pathogens are assumed to transmit at higher rates from hosts while the hosts are alive, but the pathogens truncate their infectious period by killing their hosts. Here I show that costs of mortality are too small to plausibly constrain the evolution of disease severity except in systems where survival is rare. I alternatively propose that disease severity can be much more readily constrained by a cost of behavioral change due to the detection of infection, whereby increasingly harmful pathogens have increasing likelihood of detection and behavioral change following detection, thereby limiting opportunities for transmission. Using a mathematical model, I show the conditions under which detection can limit disease severity. Ultimately, this argument may explain why empirical support for trade-off theory has been limited and mixed.


Author(s):  
Joo-Yeon Lim ◽  
Yeon Ju Kim ◽  
Seul Ah Woo ◽  
Jae Wan Jeong ◽  
Yu-Ri Lee ◽  
...  

The LAMMER kinase in eukaryotes is a well-conserved dual-specificity kinase. Aspergillus species cause a wide spectrum of diseases called aspergillosis in humans, depending on the underlying immune status of the host, such as allergy, aspergilloma, and invasive aspergillosis. Aspergillus fumigatus is the most common opportunistic fungal pathogen that causes invasive aspergillosis. Although LAMMER kinase has various functions in morphology, development, and cell cycle regulation in yeast and filamentous fungi, its function in A. fumigatus is not known. We performed molecular studies on the function of the A. fumigatus LAMMER kinase, AfLkhA, and reported its involvement in multiple cellular processes, including development and virulence. Deletion of AflkhA resulted in defects in colonial growth, production of conidia, and sexual development. Transcription and genetic analyses indicated that AfLkhA modulates the expression of key developmental regulatory genes. The AflkhA-deletion strain showed increased production of gliotoxins and protease activity. When conidia were challenged with alveolar macrophages, enodocytosis of conidia by macrophages was increased in the AflkhA-deletion strain, resulting from changes in expression of the cell wall genes and thus content of cell wall pathogen-associated molecular patterns, including β-1,3-glucan and GM. While T cell-deficient zebrafish larvae were significantly susceptible to wild-type A. fumigatus infection, AflkhA-deletion conidia infection reduced host mortality. A. fumigatus AfLkhA is required for the establishment of virulence factors, including conidial production, mycotoxin synthesis, protease activity, and interaction with macrophages, which ultimately affect pathogenicity at the organismal level.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tsukushi Kamiya ◽  
Nicole M Davis ◽  
Megan A Greischar ◽  
David Schneider ◽  
Nicole Mideo

It remains challenging to understand why some hosts suffer severe illnesses, while others are unscathed by the same infection. We fitted a mathematical model to longitudinal measurements of parasite and red blood cell density in murine hosts from diverse genetic backgrounds to identify aspects of within-host interactions that explain variation in host resilience and survival during acute malaria infection. Among eight mouse strains that collectively span 90% of the common genetic diversity of laboratory mice, we found that high host mortality was associated with either weak parasite clearance, or a strong, yet imprecise response that inadvertently removes uninfected cells in excess. Subsequent cross-sectional cytokine assays revealed that the two distinct functional mechanisms of poor survival were underpinned by low expression of either pro- or anti-inflammatory cytokines, respectively. By combining mathematical modelling and molecular immunology assays, our study uncovered proximate mechanisms of diverse infection outcomes across multiple host strains and biological scales.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bishav Bhattarai ◽  
Ananda S. Bhattacharjee ◽  
Felipe H. Coutinho ◽  
Ramesh K. Goel

Viruses play vital biogeochemical and ecological roles by (a) expressing auxiliary metabolic genes during infection, (b) enhancing the lateral transfer of host genes, and (c) inducing host mortality. Even in harsh and extreme environments, viruses are major players in carbon and nutrient recycling from organic matter. However, there is much that we do not yet understand about viruses and the processes mediated by them in the extreme environments such as hypersaline habitats. The Great Salt Lake (GSL) in Utah, United States is a hypersaline ecosystem where the biogeochemical role of viruses is poorly understood. This study elucidates the diversity of viruses and describes virus–host interactions in GSL sediments along a salinity gradient. The GSL sediment virosphere consisted of Haloviruses (32.07 ± 19.33%) and members of families Siphoviridae (39.12 ± 19.8%), Myoviridae (13.7 ± 6.6%), and Podoviridae (5.43 ± 0.64%). Our results demonstrate that salinity alongside the concentration of organic carbon and inorganic nutrients (nitrogen and phosphorus) governs the viral, bacteria, and archaeal diversity in this habitat. Computational host predictions for the GSL viruses revealed a wide host range with a dominance of viruses that infect Proteobacteria, Actinobacteria, and Firmicutes. Identification of auxiliary metabolic genes for photosynthesis (psbA), carbon fixation (rbcL, cbbL), formaldehyde assimilation (SHMT), and nitric oxide reduction (NorQ) shed light on the roles played by GSL viruses in biogeochemical cycles of global relevance.


2021 ◽  
Author(s):  
Amr T. M. Saeb ◽  
Hamsa Tayeb

Background: Streptococcus dysgalactiae subsp. equisimilis (SDSE) is the causal agent of various diseases that include wound infection, erysipelas, cellulitis, life-threatening necrotizing fasciitis, and streptococcal toxic shock syndrome. It is capable of infecting both humans and animals. In this investigation, we present a comprehensive genomic analysis for the SDSE strain SCDR1 that belongs to Lancefield group G, emm type (stG6) and (MLST) sequence type (ST44) that is the first time to be documented in Saudi Arabia and the middle east. Besides, we present the most comprehensive comparative genomics analysis for the emerging human pathogen SDSE. Methodology: We utilized next-generation sequencing techniques (NGS), bioinformatics, phylogenetic analysis, and comparative pathogenomics to characterize SCDR1 and all publicly available SDES genomes. Results: We found that SCDR1 consisted of a circular genome of 2179136 bp. Comparative analyses among bacterial genomes indicated that SCDR1 was most closely related to AC-2713 and GGS_124. Genome annotation of SCDR-1 strain showed that it contains many genes with homology to known virulence factors, including genes involved in cellular invasion, Antiphagocytosis, immune evasion, invasion of skin and soft tissue, host mortality and tissue damage, toxins, pore-forming proteins, cytotoxins, beta-hemolysis agents. Two CRISPR arrays were identified in SCDR1 that are consist of 35 CRISPR repeats and 33 CRISPR spacers. Two CAS systems were observed in the SCDR-1 genome, namely, CAS-TypeIIA and CAS-TypeIC. SDSE core Resistome is consisting of 22 genes, including folA, gyrA, gyrB, and FabK. SDSE core Virulome consisting of 38 genes including, fba, fbp54, gidA, and lsp. Conclusion: Our study confirmed that the SDSE strains possess different characteristics in producing virulence factors for pathogenicity to humans and based on its genome sequence and close relationship with GAS. Our study shed light on the proposed pathogenic mechanisms of SDSE and may form the basis of molecular epidemiological research on these highly virulent bacteria.


Sign in / Sign up

Export Citation Format

Share Document