Estimation of Disease Incidence in Fish Populations

1983 ◽  
Vol 40 (12) ◽  
pp. 2194-2197 ◽  
Author(s):  
Donald D. Worlund ◽  
Gib Taylor

A method is described to estimate the disease incidence in large populations of fish where the material analyzed is composed of a number of pooled individuals. A procedure for calculating a confidence interval estimate is presented, and the bias of the estimate discussed. The methods were developed for estimating disease incidence in hatchery populations of juvenile Pacific salmon (Oncorhynchus spp.), but are applicable to any situation in which the sampling plan can be assumed to follow the binomial distribution.

1973 ◽  
Vol 30 (9) ◽  
pp. 1383-1384 ◽  
Author(s):  
Frank J. Ossiander ◽  
Gary Wedemeyer

A computer program is described for generating the sample size tables required in fish hatchery disease inspection and certification. The program was designed to aid in detection of infectious pancreatic necrosis (IPN) in salmonids, but it is applicable to any fish disease inspection when the sampling plan follows the hypergeometric distribution.


2016 ◽  
Vol 559 ◽  
pp. 201-215 ◽  
Author(s):  
JW Moore ◽  
J Gordon ◽  
C Carr-Harris ◽  
AS Gottesfeld ◽  
SM Wilson ◽  
...  

Plant Disease ◽  
2006 ◽  
Vol 90 (11) ◽  
pp. 1433-1440 ◽  
Author(s):  
David H. Gent ◽  
Walter F. Mahaffee ◽  
William W. Turechek

The spatial heterogeneity of the incidence of hop cones with powdery mildew (Podosphaera macularis) was characterized from transect surveys of 41 commercial hop yards in Oregon and Washington from 2000 to 2005. The proportion of sampled cones with powdery mildew ( p) was recorded for each of 221 transects, where N = 60 sampling units of n = 25 cones assessed in each transect according to a cluster sampling strategy. Disease incidence ranged from 0 to 0.92 among all yards and dates. The binomial and beta-binomial frequency distributions were fit to the N sampling units in a transect using maximum likelihood. The estimation procedure converged for 74% of the data sets where p > 0, and a loglikelihood ratio test indicated that the beta-binomial distribution provided a better fit to the data than the binomial distribution for 46% of the data sets, indicating an aggregated pattern of disease. Similarly, the C(α) test indicated that 54% could be described by the beta-binomial distribution. The heterogeneity parameter of the beta-binomial distribution, θ, a measure of variation among sampling units, ranged from 0.01 to 0.20, with a mean of 0.037 and a median of 0.015. Estimates of the index of dispersion ranged from 0.79 to 7.78, with a mean of 1.81 and a median of 1.37, and were significantly greater than 1 for 54% of the data sets. The binary power law provided an excellent fit to the data, with slope and intercept parameters significantly greater than 1, which indicated that heterogeneity varied systematically with the incidence of infected cones. A covariance analysis indicated that the geographic location (region) of the yards and the type of hop cultivar had little effect on heterogeneity; however, the year of sampling significantly influenced the intercept and slope parameters of the binary power law. Significant spatial autocorrelation was detected in only 11% of the data sets, with estimates of first-order autocorrelation, r1, ranging from -0.30 to 0.70, with a mean of 0.06 and a median of 0.04; however, correlation was detected in only 20 and 16% of the data sets by median and ordinary runs analysis, respectively. Together, these analyses suggest that the incidence of powdery mildew on cones was slightly aggregated among plants, but patterns of aggregation larger than the sampling unit were rare (20% or less of data sets). Knowledge of the heterogeneity of diseased cones was used to construct fixed sampling curves to precisely estimate the incidence of powdery mildew on cones at varying disease intensities. Use of the sampling curves developed in this research should help to improve sampling methods for disease assessment and management decisions.


Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 1013-1020 ◽  
Author(s):  
David H. Gent ◽  
William W. Turechek ◽  
Walter F. Mahaffee

Sequential sampling models for estimation and classification of the incidence of powdery mildew (caused by Podosphaera macularis) on hop (Humulus lupulus) cones were developed using parameter estimates of the binary power law derived from the analysis of 221 transect data sets (model construction data set) collected from 41 hop yards sampled in Oregon and Washington from 2000 to 2005. Stop lines, models that determine when sufficient information has been collected to estimate mean disease incidence and stop sampling, for sequential estimation were validated by bootstrap simulation using a subset of 21 model construction data sets and simulated sampling of an additional 13 model construction data sets. Achieved coefficient of variation (C) approached the prespecified C as the estimated disease incidence, [Formula: see text], increased, although achieving a C of 0.1 was not possible for data sets in which [Formula: see text] < 0.03 with the number of sampling units evaluated in this study. The 95% confidence interval of the median difference between [Formula: see text] of each yard (achieved by sequential sampling) and the true p of the original data set included 0 for all 21 data sets evaluated at levels of C of 0.1 and 0.2. For sequential classification, operating characteristic (OC) and average sample number (ASN) curves of the sequential sampling plans obtained by bootstrap analysis and simulated sampling were similar to the OC and ASN values determined by Monte Carlo simulation. Correct decisions of whether disease incidence was above or below prespecified thresholds (pt) were made for 84.6 or 100% of the data sets during simulated sampling when stop lines were determined assuming a binomial or beta-binomial distribution of disease incidence, respectively. However, the higher proportion of correct decisions obtained by assuming a beta-binomial distribution of disease incidence required, on average, sampling 3.9 more plants per sampling round to classify disease incidence compared with the binomial distribution. Use of these sequential sampling plans may aid growers in deciding the order in which to harvest hop yards to minimize the risk of a condition called “cone early maturity” caused by late-season infection of cones by P. macularis. Also, sequential sampling could aid in research efforts, such as efficacy trials, where many hop cones are assessed to determine disease incidence.


2021 ◽  
Vol 23 ◽  
Author(s):  
Peyton Cook

This article is intended to help students understand the concept of a coverage probability involving confidence intervals. Mathematica is used as a language for describing an algorithm to compute the coverage probability for a simple confidence interval based on the binomial distribution. Then, higher-level functions are used to compute probabilities of expressions in order to obtain coverage probabilities. Several examples are presented: two confidence intervals for a population proportion based on the binomial distribution, an asymptotic confidence interval for the mean of the Poisson distribution, and an asymptotic confidence interval for a population proportion based on the negative binomial distribution.


Vestnik NSUEM ◽  
2021 ◽  
pp. 146-155
Author(s):  
A. V. Ganicheva ◽  
A. V. Ganichev

The problem of reducing the number of observations for constructing a confidence interval of variance with a given degree of accuracy and reliability is considered. The new method of constructing an interval estimate of variance developed in the article is formulated by three statements and justified by four proven theorems. Formulas for calculating the required number of observations depending on the accuracy and reliability of the estimate are derived. The results of the calculations are presented in the table and shown in the diagram. The universality and effectiveness of this method is shown. The universality of the method lies in the fact that it is applicable to any laws of probability distribution, and not only for the normal law. The effectiveness of the developed method is justified by comparing its performance with other known methods.


Sign in / Sign up

Export Citation Format

Share Document