Large Woody Debris and Salmonid Habitat in a Small Coastal British Columbia Stream

1992 ◽  
Vol 49 (4) ◽  
pp. 682-693 ◽  
Author(s):  
Kurt D. Fausch ◽  
Thomas G. Northcote

Sections of a small coastal British Columbia stream that had previously been cleaned of large woody debris (LWD) were compared with sections where most debris was left and with others where debris had been relatively undisturbed for at least 40 yr. Three sections where debris had been removed had simple habitat that was less sinuous, wider, and shallower and had less pool volume and overhead cover than four sections with more complex habitat where debris was retained. Habitat in four relatively undisturbed sections was generally similar to complex sections. Most pools in all sections were scour or plunge pools formed by LWD or large roots oriented perpendicular to the flow or angled downstream. Standing crop (kolograms per hectare) and individual weights of age 1 + and older coho salmon (Oncorhynchus kisutch) and cutthroat trout (O. clarki) were significantly greater (P < 0.02) in complex than in simple sections. Biomass of age 1 + and older salmonids was closely related to section pool volume (r2 = 0.92, P = 0.0006). Projections based on this model and average habitat conditions suggest that during 1990 a total of 8.0 kg of salmonid biomass, 5 times the current standing crop, was forgone in the 332-m simple reach due to prior debris removal.


2000 ◽  
Vol 57 (5) ◽  
pp. 906-914 ◽  
Author(s):  
M F Solazzi ◽  
T E Nickelson ◽  
S L Johnson ◽  
J D Rodgers

We used a BACI (before-after-control-impact) experimental design to examine the effects of increasing winter habitat on the abundance of downstream migrant salmonids. Two reference streams and two treatment streams were selected in the Alsea and Nestucca basins of Oregon. Population parameters for juvenile coho salmon (Oncorhynchus kisutch), age-0 trout (Oncorhynchus spp.), steelhead (Oncorhynchus mykiss), and coastal cutthroat trout (Oncorhynchus clarki) were estimated each year for 8 years in each stream. Stream habitat was modified to increase the quality and quantity of winter habitat during the summers of 1990 (Nestucca Basin) and 1991 (Alsea Basin). Complex habitat was constructed by adding large woody debris to newly created alcoves and dammed pools. Numbers of coho salmon summer juveniles and smolts increased in the treatment streams relative to the control streams during the posttreatment period. Overwinter survival of juvenile coho salmon also increased significantly in both treatment streams posttreatment. Summer trout populations in the treatment streams did not change, but downstream migrant numbers the following spring did increase. These increases suggest that winter habitat was limiting abundance of all three species.



2001 ◽  
Vol 58 (2) ◽  
pp. 282-292 ◽  
Author(s):  
Philip Roni ◽  
Thomas P Quinn

Thirty streams in western Oregon and Washington were sampled to determine the responses of juvenile salmonid populations to artificial large woody debris (LWD) placement. Total pool area, pool number, LWD loading, and LWD forming pools were higher in treatment (LWD placement) than paired reference reaches during summer or winter. Juvenile coho salmon (Oncorhynchus kisutch) densities were 1.8 and 3.2 times higher in treated reaches compared with reference reaches during summer and winter, respectively. The response (treatment minus reference) of coho density to LWD placement was correlated with the number of pieces of LWD forming pools during summer and total pool area during winter. Densities of age-1+ cutthroat trout (Oncorhynchus clarki) and steelhead trout (Oncorhynchus mykiss) did not differ between treatment and reference reaches during summer but were 1.7 times higher in treatment reaches during winter. Age-1+ steelhead density response to treatment during summer was negatively correlated with increases in pool area. Trout fry densities did not differ between reaches, but the response of trout fry to treatment was negatively correlated with pool area during winter. Our research indicates that LWD placement can lead to higher densities of juvenile coho during summer and winter and cutthroat and steelhead during winter.



1992 ◽  
Vol 49 (7) ◽  
pp. 1478-1485 ◽  
Author(s):  
Thomas E. McMahon ◽  
L. Blair Holtby

Coho salmon (Oncorhynchus kisutch) smolts formed aggregations in pools with large woody debris during their migration downstream and into the Carnation Creek estuary, British Columbia. Smolts utilized the estuary throughout the smolt run, with periods of high outmigration coinciding with spring tides which brought warmer, more saline water into the estuary. Smolt abundance in the stream and estuary was positively related to debris volume, and 82% of the 1260 smolts observed during underwater counts occurred within 1 m of debris. Debris volume and smolt density were significantly lower in clearcut than in buffered stream sections. Our observations support the need to retain and manage large woody debris for smolt habitat in streams and estuaries.



1959 ◽  
Vol 16 (6) ◽  
pp. 903-922 ◽  
Author(s):  
S. U. Qadri

Coastal cutthroat trout, S. c. clarkii Richardson, occupy most lakes and streams of coastal British Columbia, including the adjacent islands. Yellowstone cutthroat, S. c. lewisi (Girard), occupy southeastern British Columbia; their range is separated from that of the coastal subspecies by a zone lacking cutthroat trout. A map showing all natural distribution records in the province is presented. From 60 to 146 specimens were examined for distinguishing characters. Spots below the lateral line are more numerous towards the anterior end in S. c. clarkii, but more numerous towards the posterior end in S. c. lewisi. A plot of spot number in selected areas of the body provides almost complete separation of individuals of the two subspecies. Significant differences also occur in certain scale counts and in body and peduncle depth, although these characters overlap considerably between the subspecies. No difference was found in vertebral count.





1985 ◽  
Vol 42 (12) ◽  
pp. 2020-2028 ◽  
Author(s):  
Eric B. Taylor ◽  
J. D. McPhail

Ten populations of juvenile coho salmon, Oncorhynchus kisutch, from streams tributary to the upper Fraser River, the lower Fraser River, and the Strait of Georgia region were morphologically compared. Juveniles from coastal streams (Fraser River below Hell's Gate and the Strait of Georgia) were more robust (deeper bodies and caudal peduncles, shorter heads, and larger median fins) than interior Juveniles. Discriminant function analysis indicated that juvenile coho could be identified as to river of origin with 71% accuracy. Juvenile coho from coastal streams were less successfully classified as to stream of origin; however, juveniles could be successfully identified as either coastal or interior with 93% accuracy. Juvenile coho from north coastal British Columbia, Alaska, and the upper Columbia system also fitted this coastal and interior grouping. This suggests that a coastwide coastal–interior dichotomy in juvenile body form exists. Three populations (one interior and two coastal) were studied in more detail. In these populations the coastal versus interior morphology was consistent over successive years, and was also displayed in individuals reared from eggs in the laboratory. Adult coho salmon also showed some of the coastal–interior morphological differences exhibited by juveniles. We concluded that the morphological differences between coastal and interior coho salmon are at least partially inherited.



Author(s):  
C. J. Cederholm ◽  
R. E. Bilby ◽  
P. A. Bisson ◽  
T. W. Bumstead ◽  
B. R. Fransen ◽  
...  


1983 ◽  
Vol 61 (9) ◽  
pp. 1991-1994 ◽  
Author(s):  
T. E. McDonald

An examination of 220 chinook salmon (Oncorhynchus tshawytscha), 84 coho salmon (O. kisutch), 145 steelhead trout (Salmo gairdneri), and 21 cutthroat trout (S. clarki) for Ceratomyxa shasta (Myxozoa: Myxosporea) from 16 localities in the Fraser River drainage, British Columbia, showed that at all sites examined these salmonid species were infected, with a prevalence ranging between 11 and 100%. The study concludes that C. shasta, the causative agent of the salmonid disease ceratomyxosis, is widely distributed in the Fraser drainage basin and discusses these results in relation to proposed fish culture in the region.



1998 ◽  
Vol 55 (8) ◽  
pp. 1902-1908 ◽  
Author(s):  
Bret C Harvey

Over 4 months and about 1 year, coastal cutthroat trout (Oncorhynchus clarki clarki) age-1 in Little Jones Creek, California, remained at similar rates in pools with and without large woody debris. This result was based on attempts in July and November 1995 to collect and tag all fish in 22 pools and three collections of fish from the same pools in November 1995, May 1996, and August 1996. Retention of fish appeared to be greater in pools with large woody debris in May 1996. The presence of large woody debris in pools did not influence immigration or growth of cutthroat trout. However, both immigration and growth increased downstream over the 3850-m study reach. Low retention and substantial immigration of cutthroat trout into experimental pools indicate that movement is important in the dynamics of this population. First- and second-order channels appear to be important sources of fish for the third-order study reach, while the study reach may export significant numbers of fish to downstream reaches accessible to anadromous fish.



Sign in / Sign up

Export Citation Format

Share Document