Fluctuating asymmetry in certain morphological traits in laboratory populations of Drosophila ananassae

Genome ◽  
2006 ◽  
Vol 49 (7) ◽  
pp. 777-785 ◽  
Author(s):  
C Vishalakshi ◽  
B N Singh

Fluctuating asymmetry (FA, subtle random deviations from perfect bilateral symmetry) is often used as a measure of developmental instability (DI), which results from perturbations in developmental pathways caused by genetic or environmental stressors. During the present study, we estimated FA in 5 morphological traits, viz. wing length (WL), wing to thorax ratio (W:T), sternopleural bristle number (SBN), sex-comb tooth number (SCTN), and ovariole number (ON) in 18 laboratory populations of Drosophila ananassae. FA levels of measured traits differed significantly among populations except for SBN (in males and females) and W:T ratio (in females). Positional fluctuating asymmetry (PFA), a sensitive measure of DI, also varied significantly among the populations for SBN in females and SCTN in males. Interestingly, both males and females were similar for nonsexual traits. However, when FA across all traits (sexual and nonsexual) was combined into a single composite index (CFA), significant differences were found for both populations and sexes. Males showed higher CFA values than females, suggesting that males are more prone to developmental perturbations. The magnitude of FA differed significantly among traits, being lowest for nonsexual traits (SBN, WL, W:T ratio) and highest for sexual traits (SCTN and ON). The trait size of sexual traits (SCTN and ON) was positively correlated with their asymmetry. The possible reasons for variation in FA both among traits and among populations, and the usefulness of FA as an indicator of developmental stress and phenotypic quality in D. ananassae are discussed.Key words: fluctuating asymmetry, developmental instability, morphological traits, laboratory populations, D. ananassae.

2008 ◽  
Vol 86 (5) ◽  
pp. 427-437 ◽  
Author(s):  
C. Vishalakshi ◽  
B. N. Singh

The association of fluctuating asymmetry and phenotypic and genetic variability with environmental stress was investigated using poor nutrition and larval density as stresses on 10 recently collected isofemale lines of Drosophila ananassae Doleschall, 1858. Trait means for different morphological traits were reduced by stress, whereas phenotypic and genetic variability increased. The levels of fluctuating asymmetry and positional fluctuating asymmetry were similar in flies reared on poor and standard media. In constrast, there is a significant difference in both asymmetry measures in the flies reared at different larval densities for all traits. However, when asymmetry values across all traits were combined into a single index, composite fluctuating asymmetry, significant differences were found in males and females reared at different larval densities but not under nutritional stress. Moreover, composite fluctuating asymmetry is higher in males than in females, suggesting that males are more vulnerable to developmental stress. The results suggest that trait means are more sensitive to stress than fluctuating-symmetry measures and that the effect of stress is trait- and sex-specific. Generalizations based on the use of fluctuating asymmetry as an indicator of environmental stress in D. ananassae should therefore be used with caution.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11832
Author(s):  
Kara C. Hoover ◽  
Emily Gelipter ◽  
Volker Sommer ◽  
Kris Kovarovic

Background Developmental instability in archaeological samples can be detected through analysis of skeletal and dental remains. During life, disruptions to biological internal homeostasis that occur during growth and development redirect bodily resources to returning to homeostasis and away from normal processes such as symmetrical development. Because dental enamel does not remodel in life, any deviations from normal development are left behind. Even subtle disturbances to developmental trajectory may be detected in asymmetrical development of traits, specifically a random variation in sides termed fluctuating asymmetry. Human dental fluctuating asymmetry studies are common, but here we investigate the permanent dentition of a non-human primate Papio anubis, for potential fluctuating asymmetry relative to sex, weaning, and reproductive maturity. The sample stems from an outlier population that lives in the wettest and most humid habitat of any studied baboon group. Methods The skulls of adult baboons were collected after their natural death in Gashaka Gumti National Park, Nigeria. The permanent dentition of antimeric teeth (paired) were measured for maximum length and breadth using standard methods. The metrics were analyzed to assess the presence of fluctuating asymmetry in adult permanent mandibular and maxillary dentition. Measurement error and other forms of asymmetry (antisymmetry, directional asymmetry) were considered and dental measures expressing true fluctuating asymmetry were used to address three research questions. Results Males exhibit greater fluctuating asymmetry than females, suggesting that males experience greater overall instability during the developmental period. While weaning is not more stressful than other life history stages for males and females (using the first molar fluctuating asymmetry index as a proxy compared to other teeth), it is more stressful for females than males. The onset of reproduction is also not more stressful than other life history stages for males and females (using the third molar fluctuating asymmetry index as a proxy compared to other teeth), but it is more stressful for males than females. We explore possible explanations for these findings in the discussion.


Insects ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 202 ◽  
Author(s):  
Mari Nakano ◽  
Mary Morgan-Richards ◽  
A. Jonathan R. Godfrey ◽  
Andrea Clavijo McCormick

The New Zealand stick insect Clitarchus hookeri has both sexual and parthenogenetic (all-female) populations. Sexual populations exhibit a scramble competition mating system with distinctive sex roles, where females are signalers and males are searchers, which may lead to differences in the chemical and morphological traits between sexes. Evidence from a range of insect species has shown a decay of sexual traits is common in parthenogenetic lineages, especially those traits related to mate attraction and location, presumably due to their high cost. However, in some cases, sexual traits remain functional, either due to the recent evolution of the parthenogenetic lineage, low cost of maintenance, or because there might be an advantage in maintaining them. We measured morphological and chemical traits of C. hookeri to identify differences between males and females and between females from sexual and parthenogenetic populations. We also tested the ability of males to discriminate between sexual and parthenogenetic females in a laboratory bioassay. Our results show that male C. hookeri has morphological traits that facilitate mobility (smaller body with disproportionately longer legs) and mate detection (disproportionately longer antennae), and adult females release significantly higher amounts of volatile organic compounds than males when this species is sexually active, in accordance with their distinctive sex roles. Although some differences were detected between sexual and parthenogenetic females, the latter appear to maintain copulatory behaviors and chemical signaling. Males were unable to distinguish between sexual and parthenogenetic females, suggesting that there has been little decay in the sexual traits in the parthenogenetic lineage of C. hookeri.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 9
Author(s):  
John H. Graham

Best practices in studies of developmental instability, as measured by fluctuating asymmetry, have developed over the past 60 years. Unfortunately, they are haphazardly applied in many of the papers submitted for review. Most often, research designs suffer from lack of randomization, inadequate replication, poor attention to size scaling, lack of attention to measurement error, and unrecognized mixtures of additive and multiplicative errors. Here, I summarize a set of best practices, especially in studies that examine the effects of environmental stress on fluctuating asymmetry.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1204
Author(s):  
John H. Graham

Phenotypic variation arises from genetic and environmental variation, as well as random aspects of development. The genetic (nature) and environmental (nurture) components of this variation have been appreciated since at least 1900. The random developmental component (noise) has taken longer for quantitative geneticists to appreciate. Here, I sketch the historical development of the concepts of random developmental noise and developmental instability, and its quantification via fluctuating asymmetry. The unsung pioneers in this story are Hugo DeVries (fluctuating variation, 1909), C. H. Danforth (random variation between monozygotic twins, 1919), and Sewall Wright (random developmental variation in piebald guinea pigs, 1920). The first pioneering study of fluctuating asymmetry, by Sumner and Huestis in 1921, is seldom mentioned, possibly because it failed to connect the observed random asymmetry with random developmental variation. This early work was then synthesized by Boris Astaurov in 1930 and Wilhelm Ludwig in 1932, and then popularized by Drosophila geneticists beginning with Kenneth Mather in 1953. Population phenogeneticists are still trying to understand the origins and behavior of random developmental variation. Some of the developmental noise represents true stochastic behavior of molecules and cells, while some represents deterministic chaos, nonlinear feedback, and symmetry breaking.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
David Canal ◽  
Lotte Schlicht ◽  
Simone Santoro ◽  
Carlos Camacho ◽  
Jesús Martínez-Padilla ◽  
...  

AbstractWhy females engage in social polygyny remains an unresolved question in species where the resources provided by males maximize female fitness. In these systems, the ability of males to access several females, as well as the willingness of females to mate with an already mated male, and the benefits of this choice, may be constrained by the socio-ecological factors experienced at the local scale. Here, we used a 19-year dataset from an individual-monitored population of pied flycatchers (Ficedula hypoleuca) to establish local networks of breeding pairs. Then, we examined whether the probability of becoming socially polygynous and of mating with an already mated male (thus becoming a secondary female) is influenced by morphological and sexual traits as proxies of individual quality relative to the neighbours. We also evaluated whether social polygyny is adaptive for females by examining the effect of females’ mating status (polygamously-mated vs monogamously-mated) on direct (number of recruits in a given season) and indirect (lifetime number of fledglings produced by these recruits) fitness benefits. The phenotypic quality of individuals, by influencing their breeding asynchrony relative to their neighbours, mediated the probability of being involved in a polygynous event. Individuals in middle-age (2–3 years), with large wings and, in the case of males, with conspicuous sexual traits, started to breed earlier than their neighbours. By breeding locally early, males increased their chances of becoming polygynous, while females reduced their chances of mating with an already mated male. Our results suggest that secondary females may compensate the fitness costs, if any, of sharing a mate, since their number of descendants did not differ from monogamous females. We emphasize the need of accounting for local breeding settings (ecological, social, spatial, and temporal) and the phenotypic composition of neighbours to understand individual mating decisions.


Sign in / Sign up

Export Citation Format

Share Document