asymmetry index
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 128)

H-INDEX

16
(FIVE YEARS 3)

Author(s):  
A. Rizwana ◽  
N. Mohan ◽  
P. T. Ravi Kumar ◽  
R. Karthik ◽  
Sabitha Gokulraj

AbstractCondylar hyperplasia (CH) of the mandible is a rare developmental disorder that results in enlargement of the condyle. It is predominant in females, mostly unilateral and self-limiting. This report presents a case of a 35-year-old female patient with unilateral condylar hyperplasia with an increase in vertical height of mandibular ramus of the affected side. After initial radiographic evaluation, the asymmetry index using a panoramic radiograph was determined and also analyzed using cone-beam computed tomography (CBCT). Condylar dimensions in all the planes were measured for both sides using CBCT. This case report emphasizes the importance of CBCT and its role in the diagnosis and assessment of mandibular condylar hyperplasia.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Xuejing Bi ◽  
Min Guo ◽  
Jianqin Cao ◽  
Yanhua Hao

Although previous studies showed that social anxiety disorder (SAD) exhibits the attentional bias for angry faces, few studies investigated effective face recognition combined with event-related potential (ERP) technique in SAD patients, especially the treatment effect. This study examines the differences in face processing in SAD patients before and after treatment and healthy control people (H-group). High-density EEG scans were registered in response to emotional schematic faces, particularly interested in the face processing N170 component. Analysis of N170 amplitude revealed a larger N170 for P-group-pre in response to inverted and upright stimuli than H-group in the right hemisphere. The result of the intragroup t-test showed that N170 was delayed for inverted relative to upright faces only in P-group-post and H-group but not in P-group-pre. Remarkably, the results of ANOVAs manifested that emotional expression cannot modulate N170 for SAD patients. Besides, the N170-based asymmetry index (AI) was introduced to analyze the left- and right-hemisphere dominance of N170 for three groups. It was found that, with the improvement of patients’ treatment, the value of A I N 170 − b a s e     d presented a decreasing trend. These results together suggested that there was no inversion effect observed for patients with SAD. The change in the value of A I N 170 − b a s e     d can be used as potential electrophysiological markers for the diagnosis and treatment effects on patients with SAD.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonas Grieb ◽  
Inés Barbero-García ◽  
José Luis Lerma

AbstractCranial deformation and deformational plagiocephaly (DP) in particular affect an important percentage of infants. The assessment and diagnosis of the deformation are commonly carried by manual measurements that provide low interuser accuracy. Another approach is the use of three-dimensional (3D) models. Nevertheless, in most cases, deformation measurements are carried out manually on the 3D model. It is necessary to develop methodologies for the detection of DP that are automatic, accurate and take profit on the high quantity of information of the 3D models. Spherical harmonics are proposed as a new methodology to identify DP from head 3D models. The ideal fitted ellipsoid for each head is computed and the orthogonal distances between head and ellipsoid are obtained. Finally, the distances are modelled using spherical harmonics. Spherical harmonic coefficients of degree 2 and order − 2 are identified as the correct ones to represent the asymmetry characteristic of DP. The obtained coefficient is compared to other anthropometric deformation indexes, such as Asymmetry Index, Oblique Cranial Length Ratio, Posterior Asymmetry Index and Anterior Asymmetry Index. The coefficient of degree 2 and order − 2 with a maximum degree of 4 is found to provide better results than the commonly computed anthropometric indexes in the detection of DP.


2021 ◽  
Author(s):  
Chadlia Karoui ◽  
Kuzma Strelnikov ◽  
Pierre Payoux ◽  
Anne-Sophie Salabert ◽  
Chris James ◽  
...  

In asymmetric hearing loss (AHL), the normal pattern of contralateral hemispheric dominance for monaural stimulation is modified, with a shift towards the hemisphere ipsilateral to the better ear. The extent of this shift has been shown to relate to sound localisation deficits. In this study, we examined whether cochlear implantation to treat AHL can restore the normal functional pattern of auditory cortical activity and whether this relates to improved sound localisation. We recruited 10 subjects with a cochlear implant for AHL (AHL-CI) and 10 normally-hearing controls. The participants performed a voice/non-voice discrimination task with binaural and monaural presentation of the sounds, and the cortical activity was measured using positron emission tomography (PET) brain imaging with a H215O tracer. The auditory cortical activity was found to be lower in the AHL-CI participants for all of the conditions. A cortical asymmetry index was calculated and showed that a normal contralateral dominance was restored in the AHL-CI patients for the non-implanted ear, but not for the ear with the cochlear implant. It was found that the contralateral dominance for the non-implanted ear strongly correlated with sound localisation performance (rho = 0.8, p < 0.05). We conclude that the restoration of binaural mechanisms in AHL-CI subjects reverses the abnormal lateralisation pattern induced by the deafness, and that this leads to improved spatial hearing. Our results suggest that cochlear implantation fosters the rehabilitation of binaural excitatory/inhibitory cortical interactions, which could enable the reconstruction of the auditory spatial selectivity needed for sound localisation.


2021 ◽  
Author(s):  
Camille Michele WILLIAMS ◽  
Hugo Peyre ◽  
Roberto Toro ◽  
Franck Ramus

Studies examining cerebral asymmetries typically divide the L-R Measure (e.g., Left-Right Volume) by the L+R Measure to obtain an Asymmetry Index (AI). However, contrary to widespread belief, such a division fails to render the AI independent from the L+R Measure and/or from total brain size. As a result, variations in brain size may bias correlation estimates with the AI or group differences in AI. We investigated how to analyze brain asymmetries in to distinguish global from regional effects, and report unbiased group differences in cerebral asymmetries. We analyzed the extent to which the L+R Measure, Total Cerebral Measure (TCM, e.g., Total Brain Volume), and L-R TCM predict regional asymmetries. As a case study, we assessed the consequences of omitting each of these predictors on the magnitude and significance of sex differences in asymmetries. We found that the L+R Measure, the TCM, and the L-R TCM predicted the AI of more than 89% of regions and that their relationships were generally linear. Removing any of these predictors changed the significance of sex differences in 33% of regions and the magnitude of sex differences across 13-42% of regions. Although we generally report similar sex and age effects on cerebral asymmetries to those of previous large-scale studies, properly adjusting for regional and global brain size revealed additional sex and age effects on brain asymmetry.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2372
Author(s):  
Paul S. Sung ◽  
Moon Soo Park

Although the asymmetries of scoliotic gait in adolescent idiopathic scoliosis (AIS) groups have been extensively studied, recent studies indicated conflicting results regarding the ground reaction forces (GRFs) during gait in subjects with spinal deformity. The asymmetry during the stance phase might be clarified with three-dimensional (3D) compensations of GRFs between similar characteristics of subjects with and without AIS. The purpose of this study was to compare the normalized 3D GRF differences during the stance phase of gait while considering age, BMI, and Cobb angle between subjects with and without right AIS. There were 23 subjects with right convexity of thoracic idiopathic scoliosis and 22 age- and gender-matched control subjects. All subjects were right upper/lower limb dominant, and the outcome measures included the Cobb angles, normalized GRF, and KAI. The mediolateral (M/L) third peak force on the dominant limb decreased in the AIS group (t = 2.58, p = 0.01). Both groups demonstrated a significant interaction with the 3D indices (F = 5.41, p = 0.02). The post-hoc analysis identified that the M/L plane of asymmetry was significantly different between groups. The Cobb angles were negatively correlated with the vertical asymmetry index (r = −0.45, p = 0.03); however, there was no significant correlation with age (r = −0.10, p = 0.65) or body mass index (r = −0.28, p = 0.20). The AIS group demonstrated decreased GRF in the dominant limb M/L plane of the terminal stance phase. This compensatory motion was confirmed by a significant group difference on the M/L plane of the KAI. This KAI of vertical asymmetry correlated negatively with the Cobb angle. The asymmetric load transmission with compensatory vertical reactions was evident due to abnormal loading in the stance phase. These kinetic compensatory patterns need to be considered with asymmetry on the dominant limb when developing rehabilitation strategies for patients with AIS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chien-Hui Kao ◽  
Angela L. D’Rozario ◽  
Nicole Lovato ◽  
Rick Wassing ◽  
Delwyn Bartlett ◽  
...  

AbstractInsomnia disorder (ID) is a heterogeneous disorder with proposed subtypes based on objective sleep duration. We speculated that insomnia subtyping with additional power spectral analysis and measurement of response to acute sleep restriction may be informative in overall assessment of ID. To explore alternative classifications of ID subtypes, insomnia patients (n = 99) underwent two consecutive overnight sleep studies: (i) habitual sleep opportunity (polysomnography, PSG) and, (ii) two hours less sleep opportunity (electroencephalography, EEG), with the first night compared to healthy controls (n = 25). ID subtypes were derived from data-driven classification of PSG, EEG spectral power and interhemispheric EEG asymmetry index. Three insomnia subtypes with different sleep duration and NREM spectral power were identified. One subtype (n = 26) had shorter sleep duration and lower NREM delta power than healthy controls (short-sleep delta-deficient; SSDD), the second subtype (n = 51) had normal sleep duration but lower NREM delta power than healthy controls (normal-sleep delta-deficient; NSDD) and a third subtype showed (n = 22) no difference in sleep duration or delta power from healthy controls (normal neurophysiological sleep; NNS). Acute sleep restriction improved multiple objective sleep measures across all insomnia subtypes including increased delta power in SSDD and NSDD, and improvements in subjective sleep quality for SSDD (p = 0.03), with a trend observed for NSDD (p = 0.057). These exploratory results suggest evidence of novel neurophysiological insomnia subtypes that may inform sleep state misperception in ID and with further research, may provide pathways for personalised care.


Author(s):  
Asha Hollis ◽  
Lauran Cole ◽  
Ephrem Zewdie ◽  
Megan J. Metzler ◽  
Adam Kirton

Abstract Background Hemiparetic cerebral palsy impacts millions of people worldwide. Assessment of bilateral motor function in real life remains a major challenge. We evaluated quantification of upper extremity movement in hemiparetic children using bilateral actigraphy. We hypothesized that movement asymmetry correlates with standard motor outcome measures. Methods Hemiparetic and control participants wore bilateral wrist Actiwatch2 (Philips) for 48 h with movement counts recorded in 15-s intervals. The primary outcome was a novel statistic of movement asymmetry, the Actigraphic Movement Asymmetry Index (AMAI). Relationships between AMAI and standard motor outcomes (Assisting Hand Assessment, Melbourne Assessment, and Box and Block Test [BB]) were explored with Pearson or Spearman correlation. Results 30 stroke (mean 11 years 2 months (3 years 10 months); 13 female, 17 male) and 23 control (mean 11 years 1 month (4 years 5 months); 8 female, 15 male) were enrolled. Stroke participants demonstrated higher asymmetry. Correlations between AMAI and standard tests were moderate and strongest during sleep (BB: r = 0.68, p < 0.01). Conclusions Standard tests may not reflect the extent of movement asymmetry during daily life in hemiparetic children. Bilateral actigraphy may be a valuable complementary tool for measuring arm movement, potentially enabling improved evaluation of therapies with a focus on child participation.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1199
Author(s):  
Samo Rauter ◽  
Jozef Simenko

The aims of this study are: (1) to identify morphological asymmetries in road cycling by using a novel 3D scanning method and electrical bioimpedance, (2) to investigate possible asymmetries in road cyclists of low (LPG) and high (HPG) performance group, (3) to compare the number of morphological asymmetries between HPG and LPG of cyclists, and (4) to explore correlations between asymmetry scores and competition performance. Body composition and 3D anthropometric measurements were conducted on 48 top-level male road cyclists (178.98 ± 5.39 cm; 68.37 ± 5.31 kg) divided into high (n = 22) and low (n = 26) performance groups. Competition performance (CP) is represented through racing points gathered at the end of the competition season. The latter was used to divide road cyclists into low- and high-performing groups. One-way ANOVA was used to determine differences between groups, while paired-samples T-test and Absolute Asymmetry index (AA) were calculated (p ≤ 0.05) for paired variables inside the groups, and the Spearman correlation coefficient was used to explore correlations between AA and CP. Results showed statistically significant differences between the left and right side of different body segments (16 paired variables) among low-performing road cyclists in five paired variables of the upper body: elbow girth (4.35, p = 0.000), forearm girth (6.31, p = 0.000), arm surface area (2.54, p = 0.018), and arm volume (2.71, p = 0.012); and six paired variables of the lower body: leg lean mass (5.85, p = 0.000), leg length (3.04, p = 0.005), knee girth (4.93, p = 0.000), calf girth (5.25, p = 0.000), leg surface area (4.03, p = 0.000), and leg volume (5.3, p = 0.000). Altogether, the high-performing group of road cyclists statistically differed only in 2 out of 16 paired variables of the upper body: elbow girth (4.93, p = 0.000) and in forearm girth (5.12, p = 0.000). Low- and high-performing groups were statistically significantly different in the asymmetry of leg lean mass F(1,46) = 6.25, p = 0.016 and asymmetry of the calf girth F(1,46) = 7.44, p = 0.009. AA of calf girth on the total sample (n = 48) showed a significant correlation with CP (r = −0.461; p = 0.001). In conclusion, the study’s main finding was that high-performance road cyclists are more symmetrical than the low-performance group, for which it is significant to have a higher amount of morphological asymmetries.


MethodsX ◽  
2021 ◽  
pp. 101590
Author(s):  
Kai S. Exner
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document