Identification of stress-induced genes from the drought-tolerant plant Prosopis juliflora (Swartz) DC. through analysis of expressed sequence tags

Genome ◽  
2007 ◽  
Vol 50 (5) ◽  
pp. 470-478 ◽  
Author(s):  
Suja George ◽  
Gayatri Venkataraman ◽  
Ajay Parida

Abiotic stresses such as cold, salinity, drought, wounding, and heavy metal contamination adversely affect crop productivity throughout the world. Prosopis juliflora is a phreatophyte that can tolerate severe adverse environmental conditions such as drought, salinity, and heavy metal contamination. As a first step towards the characterization of genes that contribute to combating abiotic stress, construction and analysis of a cDNA library of P. juliflora genes is reported here. Random expressed sequence tag (EST) sequencing of 1750 clones produced 1467 high-quality reads. These clones were classified into functional categories, and BLAST comparisons revealed that 114 clones were homologous to genes implicated in stress response(s) and included heat shock proteins, metallothioneins, lipid transfer proteins, and late embryogenesis abundant proteins. Of the ESTs analyzed, 26% showed homology to previously uncharacterized genes in the databases. Fifty-two clones from this category were selected for reverse Northern analysis: 21 were shown to be upregulated and 16 downregulated. The results obtained by reverse Northern analysis were confirmed by Northern analysis. Clustering of the 1467 ESTs produced a total of 295 contigs encompassing 790 ESTs, resulting in a 54.2% redundancy. Two of the abundant genes coding for a nonspecific lipid transfer protein and late embryogenesis abundant protein were sequenced completely. Northern analysis (after polyethylene glycol stress) of the 2 genes was carried out. The implications of the analyzed genes in abiotic stress tolerance are also discussed.


2010 ◽  
Vol 9 (7) ◽  
pp. 903-908 ◽  
Author(s):  
Payam Najafi ◽  
Mitra Ataabadi ◽  
Mehran Hoodaji ◽  
Fuad Adib


2009 ◽  
Vol 8 (6) ◽  
pp. 1541-1551
Author(s):  
Corneliu Horaicu ◽  
Florea Cornel Gabrian ◽  
Irina Grozavu ◽  
Catalin Constantin Calu ◽  
Monica Horaicu ◽  
...  


2020 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Nesma Youghly ◽  
Mona Elbous ◽  
Magdy Elbanna ◽  
Heba Taher ◽  
Nabil Hegazi ◽  
...  


1993 ◽  
Vol 27 (7-8) ◽  
pp. 263-269 ◽  
Author(s):  
B. Iosefzon-Kuyavskaya ◽  
N. Myrlyan ◽  
A. Shames

Electron Spin Resonance (ESR) was used for the examination oi dust samples collected from snow in an urban area. On the main doublet ESR line attributed to the signal of paramagnetic metals, a singlet line characteristic for stable free radical centers (FRC) was observed. A negative correlation of significant level between FRC signal intensity and heavy metal (HM) content was established. It was shown that FRC line intensity of dust may be used as a surrogate parameter for the estimation of air pollution by HM.



1996 ◽  
Author(s):  
R Blake ◽  
D Blake ◽  
G Flowers


Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.



Sign in / Sign up

Export Citation Format

Share Document