Cytogenetic studies of interspecific hybrids between diploid species of Festuca

1986 ◽  
Vol 28 (6) ◽  
pp. 921-925 ◽  
Author(s):  
W. G. Morgan ◽  
Hugh Thomas ◽  
M. Evans ◽  
M. Borrill

Chromosome pairing in hybrids between diploid species of Festuca is described. The chromosome complements of the species from different taxonomic sections vary in chromosome size and DNA content. In interspecific hybrids involving species of the section Montanae there was a relationship between the difference in DNA content of the parental species and chromosome pairing in the F1 hybrids. The larger the difference between the DNA content of the parental species, the more pronounced the failure of chromosome pairing in the F1 hybrids. Factors other than divergence in genome size were also shown to have an effect on chromosome pairing in other hybrid combinations.Key words: chromosome pairing, DNA content, Festuca, hybrids (interspecific).

2019 ◽  
Vol 30 (2) ◽  
pp. 47-54
Author(s):  
M.R. Ferrari ◽  
E.J. Greizerstein ◽  
L. Poggio

In this work the relationship between genome size of Glandularia species and the meiotic configurations found in their hybrids are discussed. Glandularia incisa (Hook.) Tronc., growing in two localities of Corrientes and Córdoba provinces, Argentina, with different ecological conditions, showed inter-population variability of the 2C-value. The DNA content found in the Corrientes locality (2.41 pg) was higher than that obtained in the Córdoba locality (2.09 pg) which has more stressful environmental conditions than the former. These values are statistically different from those that were found in Glandularia pulchella (Sweet) Tronc. from Corrientes (1.43 pg) and in Glandularia perakii Cov. et Schn from Córdoba (1.47 pg). The DNA content of the diploid F1 hybrids, G. pulchella × G. incisa and G. perakii × G. incisa, differed statistically from the DNA content of the parental species, being intermediate between them. Differences in the frequency of pairing of homoeologous chromosomes were observed in the hybrids; these differences cannot be explained by differences in genome size since hybrids with similar DNA content differ significantly in their meiotic behavior. On the other hand, the differences in the DNA content between the parental species justify the presence of a high frequency of heteromorphic open and closed bivalents and univalents with different size in the hybrids. Key words: Intra-specific DNA content variability, homoeologous pairing, heteromorphic bivalents


1983 ◽  
Vol 25 (5) ◽  
pp. 530-539 ◽  
Author(s):  
Jan Dvořák

Data on chromosome pairing in haploids and interspecific hybrids of Solanum, sect. Petota reported in the literature were used to determine whether the diploidlike chromosome pairing that occurs in some of the polyploid species of the section is regulated by the genotype or brought about by some other mechanism. The following trends emerged from these data. Most of the polyploid × polyploid hybrids had high numbers of univalents, which seemed to indicate that the polyploid species were constructed from diverse genomes. Haploids, except for those derived from S. tuberosum, had incomplete chromosome pairing. All hybrids from diploid × diploid crosses had more or less regular chromosome pairing, which suggested that all investigated diploid species have the same genome. Likewise, hybrids from polyploid × diploid crosses had high levels of chromosome pairing. These paradoxical results are best explained if it is assumed that (i) the genotypes of most polyploid species, but not those of the diploid species, suppress heterogenetic pairing, (ii) that nonstructural chromosome differentiation is present among the genomes of both diploid and polyploid species, and (iii) the presence of the genome of a diploid species in a polyploid × diploid hybrid results in promotion of heterogenetic pairing. It is, therefore, concluded that heterogenetic pairing in most of the polyploid species is genetically suppressed.


Genome ◽  
2010 ◽  
Vol 53 (6) ◽  
pp. 430-438 ◽  
Author(s):  
B. R. Baum ◽  
M. Feldman

Two classes of 5S DNA units, namely the short (containing units of 410 bp) and the long (containing units of 500 bp), are recognized in species of the wheat (the genera Aegilops and Triticum ) group. While every diploid species of this group contains 2 unit classes, the short and the long, every allopolyploid species contains a smaller number of unit classes than the sum of the unit classes of its parental species. The aim of this study was to determine whether the reduction in these unit classes is due to the process of allopolyploidization, that is, interspecific or intergeneric hybridization followed by chromosome doubling, and whether it occurs during or soon after the formation of the allopolyploids. To study this, the number and types of unit classes were determined in several newly formed allotetraploids, allohexaploids, and an allooctoploid of Aegilops and Triticum. It was found that elimination of unit classes of 5S DNA occurred soon (in the first 3 generations) after the formation of the allopolyploids. This elimination was reproducible, that is, the same unit classes were eliminated in natural and synthetic allopolyploids having the same genomic combinations. No further elimination occurred in the unit classes of the 5S DNA during the life of the allopolyploid. The genetic and evolutionary significance of this elimination as well as the difference in response to allopolyploidization of 5S DNA and rDNA are discussed.


Genome ◽  
2007 ◽  
Vol 50 (11) ◽  
pp. 1029-1037 ◽  
Author(s):  
T. Eilam ◽  
Y. Anikster ◽  
E. Millet ◽  
J. Manisterski ◽  
O. Sagi-Assif ◽  
...  

One of the intriguing issues concerning the dynamics of plant genomes is the occurrence of intraspecific variation in nuclear DNA amount. The aim of this work was to assess the ranges of intraspecific, interspecific, and intergeneric variation in nuclear DNA content of diploid species of the tribe Triticeae (Poaceae) and to examine the relation between life form or habitat and genome size. Altogether, 438 plants representing 272 lines that belong to 22 species were analyzed. Nuclear DNA content was estimated by flow cytometry. Very small intraspecific variation in DNA amount was found between lines of Triticeae diploid species collected from different habitats or between different morphs. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various diploid species. Within the genus Aegilops , the 1C DNA amount ranged from 4.84 pg in A. caudata to 7.52 pg in A. sharonensis; among genera, the 1C DNA amount ranged from 4.18 pg in Heteranthelium piliferum to 9.45 pg in Secale montanum . No evidence was found for a smaller genome size in annual, self-pollinating species relative to perennial, cross-pollinating ones. Diploids that grow in the southern part of the group’s distribution have larger genomes than those growing in other parts of the distribution. The contrast between the low variation at the intraspecific level and the high variation at the interspecific one suggests that changes in genome size originated in close temporal proximity to the speciation event, i.e., before, during, or immediately after it. The possible effects of sudden changes in genome size on speciation processes are discussed.


1959 ◽  
Vol 37 (5) ◽  
pp. 1063-1070 ◽  
Author(s):  
William F. Grant

Spontaneous triploid hybrids (2n = 49) were discovered between Amaranthus spinosus L. (2n = 34), a diploid species, and A. dubius Mart. ex Thellung (2n = 64) which was found to be a tetraploid. Meiosis in the hybrids was irregular and 15 univalents were most frequently found along with the bivalents pairing apparently allosyndetically (15 I's + 17 II's = 2n = 49) at metaphase I. Univalents were excluded from the telophase nuclei in both meiotic divisions resulting in supernumerary microspores and in a reduction in the mean size of the microspores. Consequently, the triploids were largely sterile and the few undersized seeds produced failed to germinate. Seed weight, seed volume, stomatal size, and pollen grain size were proportional to chromosome number in the parents only, not in their hybrids. Since A. dubius exhibits typical bivalent behavior in synapsis, it is considered to be an allotetraploid in which A. spinosus has been one progenitor. It is suggested that the diploid A. quitensis H. B. K. (2n = 32) might be the other progenitor, but from chromosome number relationships and morphological considerations more than two species may be involved. As a result of the high sterility of the triploids, gene exchange between the parental species must be of a very limited nature.


Genome ◽  
1994 ◽  
Vol 37 (4) ◽  
pp. 560-564 ◽  
Author(s):  
S. N. Raina ◽  
A. Parida ◽  
K. K. Koul ◽  
S. S. Salimath ◽  
M. S. Bisht ◽  
...  

The 2C and 4C nuclear DNA amounts were estimated in eight diploid species, belonging to three diverse genera (Vicia, Tephrosia, and Phlox) and their corresponding colchitetraploids. In P. drummondii, T. purpurea, and T. oxygona tetraploids the deviation from the expectation was highly significant. The DNA in P. drummondii was further discarded in subsequent (C1, C2) generations, thus attaining an overall reduction of about 25%. The DNA content in the subsequent generations was the same as that of C2. It is concluded that rapid DNA loss in the first and subsequent generations was not only associated with the substantial increase (30–66%) in the seed set, but it also helped in the establishment and stabilization of the tetraploid. The possible relationship between such a nucleotypic change and success of polyploids is discussed. The DNA change from the expected value in the P. drummondii tetraploid was achieved by equal decrement to each chromosome independent of size, i.e., small chromosomes loose the same amount of DNA as the large chromosomes.Key words: colchitetraploid, genome size, DNA loss, seed fertility, stability, DNA distribution.


Genome ◽  
1989 ◽  
Vol 32 (6) ◽  
pp. 1079-1084 ◽  
Author(s):  
Catherine Hsiao ◽  
Kay H. Asay ◽  
Douglas R. Dewey

Agropyron mongolicum Keng, the narrow linear-spiked diploid species (2n = 14), was hybridized with the broad pectinate-spiked diploid (2n = 14), A. cristatum (L.) Gaertner. The F1 hybrids were all diploids and morphologically intermediate to their parents. Chromosome pairing at metaphase I in the hybrids averaged 1.40 I, 5.59 II, 0.35 III, and 0.09 IV per cell, demonstrating that the two parental genomes are very similar. The F1 hybrids were partially fertile. The F2 progeny showed a broad array of variations in spike morphology and chromosome pairing behavior. Cytological data of the F1 hybrids and the F2 progeny revealed that these two diploid species contain the same basic P genome but differ by structural rearrangements of some chromosomes. The patterns of multivalent associations were the result of a heterozygous reciprocal translocation between a long and a very short chromosome segment. The colchicine-induced C0 amphiploids were fully fertile with regular chromosome pairing behavior. These two diploid species are the likely source of morphological variation in the tetraploid crested wheatgrasses.Key words: Agropyron, cytogenetics, chromosome pairing, interspecific hybrids.


1994 ◽  
Vol 119 (6) ◽  
pp. 1312-1316 ◽  
Author(s):  
W. Vance Baird ◽  
Agnes S. Estager ◽  
John K. Wells

Using laser flow cytometry, nuclear DNA amounts were estimated for 12 Prunus species, representing three subgenera [Prunophora (Prunus), Amygdalus, and Cerasus (Lithocerasus)], two interspecific hybrids, four cultivars, and a synthetic polyploid series of peach consisting of haploids, diploids, triploids, and tetraploids (periclinal cytochimeras). Peach nuclear DNA content ranged from 0.30 pg for the haploid nuclei to 1.23 pg for the tetraploid nuclei. The diploid genome of peach is relatively small and was estimated to be 0.60±0.03 pg (or 5.8×108 nucleotide base pairs). The polyploid series represented the expected arithmetic progression, as genome size positively correlated with ploidy level (i.e., DNA content was proportional to chromosome number). The DNA content for the 12 diploid species and two interspecific diploid hybrids ranged from 0.57 to 0.79 pg. Genome size estimates were verified independently by Southern blot analysis, using restriction fragment length polymorphism clones as gene-copy equivalents. Thus, a relatively small and stable nuclear genome typifies the Prunus species investigated, consistent with their low, basic chromosome number (× = 8).


Genome ◽  
1987 ◽  
Vol 29 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Jan Dvořák

Triticum aestivum L. lines with added or substituted chromosomes of Elytrigia elongata (Host) Nevski were hybridized with Hordeum bulbosum L. to obtain haploids and with Triticum urartu Thum. to obtain interspecific hybrids. Chromosome pairing at metaphase I was investigated in the resulting haploids and hybrids and the parental addition and substitution lines. Genes that promoted pairing of homologous or homoeologous chromosomes were found on chromosome arms 3ES, 3EL, 4ES, 5Ep, and chromosome 6E of E. elongata. Genes that suppressed pairing of homoeologous chromosomes were found on chromosome arms 4EL and 7Eq. It is concluded that genes promoting or suppressing pairing of homoeologous chromosomes are ubiquitous among diploid species. Key words: wheat, Triticum, wheatgrass, Elytrigia elongata, heterogenetic pairing, chromosome pairing, pairing promotion, pairing suppression.


Genome ◽  
1989 ◽  
Vol 32 (5) ◽  
pp. 901-907 ◽  
Author(s):  
C. B. Gillies ◽  
A. J. Lukaszewski

Zygotene–pachytene nuclei from a rye line heterozygous for most terminal C-bands were found by electron microscopic spreading analysis to have unequal lateral elements at most synaptonemal complex telomeres. An unpaired lateral element protruded beyond the end of the synaptonemal complex at each such telomere. Another rye line with only one C-band heterozygous telomere had only one uneven synaptonemal complex telomere. The length differences between paired lateral elements in heterozygotes (both total complement and individual synaptonemal complexes) was considerably less than the difference in DNA content or somatic metaphase chromosome size between C-band positive and C-band negative lines. There was no evidence of a synaptic adjustment effect reducing the telomere length differences in later pachytene–diplotene stage nuclei. Heterozygosity for the 1RL terminal C-band resulted in a slight reduction in chiasma frequency in that arm but no shift in chiasma position.Key words: rye, C-bands, telomeres, chromosome pairing, synaptonemal complex.


Sign in / Sign up

Export Citation Format

Share Document