Genomic in situ hybridization (GISH) reveals high chromosome pairing affinity between Lolium perenne and Festuca mairei

Genome ◽  
2000 ◽  
Vol 43 (2) ◽  
pp. 398-403 ◽  
Author(s):  
Mingshu Cao ◽  
David A Sleper ◽  
Fenggao Dong ◽  
Jiming Jiang

Intergeneric hybridizations have been made between species of Lolium and Festuca. It has been demonstrated, largely through conventional cytogenetic analysis, that the genomes of the two genera are related, however, much information is lacking on exactly how closely related the genomes are between the two species. We applied genomic in situ hybridization (GISH) techniques to the F1 hybrids of tetraploid Festuca mairei with a genomic constitution of M1M1M2M2 and diploid Lolium perenne with a genomic constitution of LL. It was shown in the triploid hybrids (LM1M2) that the chromosomes of M1 and M2 from F. mairei could pair with each other, and it was further discovered that L chromosomes of L. perenne paired with M1 and M2 chromosomes. Our results showed that meiocytes of Lolium-Festuca are amenable to GISH analysis, and provided direct evidence for the hypothesis that the chromosomes of Lolium and Festuca may be genetically equivalent and that reciprocal mixing of the genomes may be possible. Key words: Lolium, Festuca, in situ hybridization, meiosis.

2008 ◽  
Vol 16 (4) ◽  
pp. 575-585 ◽  
Author(s):  
Zbigniew Zwierzykowski ◽  
Elżbieta Zwierzykowska ◽  
Magdalena Taciak ◽  
Neil Jones ◽  
Arkadiusz Kosmala ◽  
...  

Genome ◽  
2004 ◽  
Vol 47 (6) ◽  
pp. 1173-1181 ◽  
Author(s):  
Prem P Jauhar ◽  
M Doğramaci ◽  
T S Peterson

Wild grasses in the tribe Triticeae, some in the primary or secondary gene pool of wheat, are excellent reservoirs of genes for superior agronomic traits, including resistance to various diseases. Thus, the diploid wheatgrasses Thinopyrum bessarabicum (Savul. and Rayss) Á. Löve (2n = 2x = 14; JJ genome) and Lophopyrum elongatum (Host) Á. Löve (2n = 2x = 14; EE genome) are important sources of genes for disease resistance, e.g., Fusarium head blight resistance that may be transferred to wheat. By crossing fertile amphidiploids (2n = 4x = 28; JJEE) developed from F1 hybrids of the 2 diploid species with appropriate genetic stocks of durum wheat, we synthesized trigeneric hybrids (2n = 4x = 28; ABJE) incorporating both the J and E genomes of the grass species with the durum genomes A and B. Trigeneric hybrids with and without the homoeologous-pairing suppressor gene, Ph1, were produced. In the absence of Ph1, the chances of genetic recombination between chromosomes of the 2 useful grass genomes (JE) and those of the durum genomes (AB) would be enhanced. Meiotic chromosome pairing was studied using both conventional staining and fluorescent genomic in situ hybridization (fl-GISH). As expected, the Ph1-intergeneric hybrids showed low chromosome pairing (23.86% of the complement), whereas the trigenerics with ph1b (49.49%) and those with their chromosome 5B replaced by 5D (49.09%) showed much higher pairing. The absence of Ph1 allowed pairing and, hence, genetic recombination between homoeologous chromosomes. Fl-GISH analysis afforded an excellent tool for studying the specificity of chromosome pairing: wheat with grass, wheat with wheat, or grass with grass. In the trigeneric hybrids that lacked chromosome 5B, and hence lacked the Ph1 gene, the wheat–grass pairing was elevated, i.e., 2.6 chiasmata per cell, a welcome feature from the breeding standpoint. Using Langdon 5D(5B) disomic substitution for making trigeneric hybrids should promote homoeologous pairing between durum and grass chromosomes and hence accelerate alien gene transfer into the durum genomes.Key words: alien gene transfer, chiasma (xma) frequency, chromosome pairing, fluorescent genomic in situ hybridization (fl-GISH), homoeologous-pairing regulator, specificity of chromosome pairing, wheatgrass.


Genome ◽  
2003 ◽  
Vol 46 (1) ◽  
pp. 164-169 ◽  
Author(s):  
Pernilla Ellneskog-Staam ◽  
Björn Salomon ◽  
Roland von Bothmer ◽  
Kesara Anamthawat-Jónsson

The genomic constitution of two species in the genus Psammopyrum, i.e., Ps. athericum (2n = 6x = 42) and Ps. pungens (2n = 8x = 56), was studied by genomic in situ hybridization (GISH). In Ps. athericum, one diploid chromosome set hybridized to a genomic probe from Pseudoroegneria ferganensis (St genome), one diploid set to a probe from Agropyron cristatum (P genome), and one diploid set to a probe from Thinopyrum junceiforme (EbEe genomes) or Th. bessarabicum (Eb genome). Substituting the St-genome probe with an L-genome probe from Festucopsis serpentinii resulted in exactly the same hybridization pattern, suggesting a genomic constitution of EStP or ELP for Ps. athericum. The same probes used on Ps. pungens showed two diploid sets of chromosomes hybridizing to the St-genome probe, one diploid set hybridizing to the P-genome probe, and one diploid set hybridizing to the EbEe-genome probe. The L-genome probe hybridized to approximately 14 of the chromosomes that were labeled by the St-genome probe. Hence the genomic constitution for Ps. pungens is proposed to be EStStP or EStLP.Key Words: Psammopyrum athericum, Psammopyrum pungens, in situ hybridization, Elytrigia pycnantha, Elytrigia pungens, genome analysis.


Euphytica ◽  
2014 ◽  
Vol 200 (2) ◽  
pp. 251-257 ◽  
Author(s):  
Tomonari Kishimoto ◽  
Miki Yamakawa ◽  
Daisuke Nakazawa ◽  
Junji Amano ◽  
Sachiko Kuwayama ◽  
...  

Genome ◽  
2011 ◽  
Vol 54 (12) ◽  
pp. 959-964 ◽  
Author(s):  
Ming Hao ◽  
Jiangtao Luo ◽  
Min Yang ◽  
Lianquan Zhang ◽  
Zehong Yan ◽  
...  

The ph-like genes in the Chinese common wheat landrace Kaixian-luohanmai (KL) induce homoeologous pairing in hybrids with alien species. In the present study, meiotic phenotypic differences on homoeologous chromosome pairing at metaphase I between hybrids of wheat genotypes Chinese Spring ph1b (CSph1b) and KL with rye were studied by genomic in situ hybridization (GISH). The frequency of wheat–wheat associations was higher in CSph1b × rye than in KL × rye. However, frequencies of wheat–rye and rye–rye associations were higher in KL × rye than in CSph1b × rye. These differences may be the result of different mechanisms of control between the ph-like gene(s) controlling homoeologous chromosome pairing in KL and CSph1b. Wheat–wheat associations were much more frequent than wheat–rye pairing in both hybriods. This may be caused by lower overall affinity, or homoeology, between wheat and rye chromosomes than between wheat chromosomes.


2011 ◽  
Vol 108 (5) ◽  
pp. 975-981 ◽  
Author(s):  
Mouna Jeridi ◽  
Frédéric Bakry ◽  
Jacques Escoute ◽  
Emmanuel Fondi ◽  
Françoise Carreel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document