The Effect of Different Calculation Methods of Flywheel Parameters on the Wingate Anaerobic Test

1998 ◽  
Vol 23 (4) ◽  
pp. 409-417 ◽  
Author(s):  
Simon G. S. Coleman

Researchers compared different methods of calculating kinetic parameters of friction-braked cycle ergometers, and the subsequent effects on calculating power outputs in the Wingate Anaerobic Test (WAnT). Three methods of determining flywheel moment of inertia and frictional torque were investigated, requiring "run-down" tests and segmental geometry. Parameters were used to calculate corrected power outputs from 10 males in a 30-s WAnT against a load related to body mass (0.075 kg•kg−1). Wingate Indices of maximum (5 s) power, work, and fatigue index were also compared. Significant differences were found between uncorrected and corrected power outputs and between correction methods (p < .05). The same finding was evident for all Wingate Indices (p < .05). Results suggest that WAnT must be corrected to give true power outputs and that choosing an appropriate correction calculation is important. Determining flywheel moment of inertia and frictional torque using unloaded run-down tests is recommended. Key words: sprint ergometry, power output, moment of inertia

2020 ◽  
Vol 45 (7) ◽  
pp. 753-760 ◽  
Author(s):  
Jesus G. Pallarés ◽  
Jose R. Lillo-Bevia ◽  
Ricardo Morán-Navarro ◽  
Victor Cerezuela-Espejo ◽  
Ricardo Mora-Rodriguez

Three to 5 cycling tests to exhaustion allow prediction of time to exhaustion (TTE) at power output based on calculation of critical power (CP). We aimed to determine the accuracy of CP predictions of TTE at power outputs habitually endured by cyclists. Fourteen endurance-trained male cyclists underwent 4 randomized cycle-ergometer TTE tests at power outputs eliciting (i) mean Wingate anaerobic test (WAnTmean), (ii) maximal oxygen consumption, (iii) respiratory compensation threshold (VT2), and (iv) maximal lactate steady state (MLSS). Tests were conducted in duplicate with coefficient of variation of 5%–9%. Power outputs were 710 ± 63 W for WAnTmean, 366 ± 26 W for maximal oxygen consumption, 302 ± 31 W for VT2 and 247 ± 20 W for MLSS. Corresponding TTE were 00:29 ± 00:06, 03:23 ± 00:45, 11:29 ± 05:07, and 76:05 ± 13:53 min:s, respectively. Power output associated with CP was only 2% lower than MLSS (242 ± 19 vs. 247 ± 20 W; P < 0.001). The CP predictions overestimated TTE at WAnTmean (00:24 ± 00:10 mm:ss) and MLSS (04:41 ± 11:47 min:s), underestimated TTE at VT2 (–04:18 ± 03:20 mm:ss; P < 0.05), and correctly predicted TTE at maximal oxygen consumption. In summary, CP accurately predicts MLSS power output and TTE at maximal oxygen consumption. However, it should not be used to estimate time to exhaustion in trained cyclists at higher or lower power outputs (e.g., sprints and 40-km time trials). Novelty CP calculation enables to predict TTE at any cycling power output. We tested those predictions against measured TTE in a wide range of cycling power outputs. CP appropriately predicted TTE at maximal oxygen consumption intensity but err at higher and lower cycling power outputs.


Author(s):  
João Gabriel Silveira-Rodrigues ◽  
André Maia-Lima ◽  
Pedro Augusto Santos Almeida ◽  
Bárbara Marielle Silva França ◽  
Bruno Teobaldo Campos ◽  
...  

1997 ◽  
Vol 9 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Michael Chia ◽  
Neil Armstrong ◽  
David Childs

Twenty-five girls and 25 boys (mean age 9.7 ± 0.3 years) each completed a 20- and 30-s Wingate Anaerobic Test (WAnT). Oxygen uptake during the WAnTs, and postexercise blood lactate samples were obtained. Inertia and load-adjusted power variables were higher (18.6–20.1% for peak, and 6.7–7.5% for mean power outputs, p < .05) than the unadjusted values for both the 20- and 30-s WAnTs. The adjusted peak power values were higher (7.7–11.6%, p < .05) in both WAnTs when integrated over 1-s than over 5-s time periods. The aerobic contributions to the tests were lower (p < .05) in the 20-s WAnT (13.7–35.7%) than in the 30-s WAnT (17.7–44.3%) for assumed mechanical efficiencies of 13% and 30%. Postexercise blood lactate concentration after the WAnTs peaked by 2 min. No gender differences (p > .05) in anaerobic performances or peak blood lactate values were detected.


1985 ◽  
Vol 06 (02) ◽  
pp. 82-85 ◽  
Author(s):  
J. Patton ◽  
M. Murphy ◽  
F. Frederick

1994 ◽  
Vol 11 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Cameron O’Beirne ◽  
Dawne Larkin ◽  
Tim Cable

Generally, children with coordination problems lack fitness and muscular strength. This study was designed to identify whether these children differed from age-matched controls on measures of anaerobic performance. Twenty-four boys who were poorly coordinated, from three age groups, 7, 8, and 9 years, were compared to 24 coordinated controls (N = 48). The McCarron (1982) Assessment of Neuromuscular Development (MAND) was used to confirm levels of coordination. Anaerobic performance was estimated with the Wingate Anaerobic Test (WAnT) and a 50-m run. The poorly coordinated group’s performance on the WAnT was significantly lower than the performance of the controls for measures of peak power normalized for body weight, absolute and normalized mean power, and the fatigue index. The subjects who were poorly coordinated were also significantly slower performing the 50-m sprint. There was a significant relationship between power measured on the WAnT and coordination measured by the MAND gross motor score. For this population, coordination problems were considered among the factors that may interfere with the measurement of anaerobic performance.


Sign in / Sign up

Export Citation Format

Share Document