mean power output
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 36)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 11 (24) ◽  
pp. 12105
Author(s):  
Anna Katharina Dunst ◽  
René Grüneberger ◽  
Hans-Christer Holmberg

In track cycling sprint events, optimal cadence PRopt is a dynamic aspect of fatigue. It is currently unclear what cadence is optimal for an athlete’s performance in sprint races and how it can be calculated. We examined fatigue-induced changes in optimal cadence during a maximal sprint using a mathematical approach. Nine elite track cyclists completed a 6-s high-frequency pedaling test and a 60-s isokinetic all-out sprint on a bicycle ergometer with continuous monitoring of crank force and cadence. Fatigue-free force-velocity (F/v) and power-velocity (P/v) profiles were derived from both tests. The development of fatigue during the 60-s sprint was assessed by fixing the slope of the fatigue-free F/v profile. Fatigue-induced alterations in PRopt were determined by non-linear regression analysis using a mono-exponential equation at constant slope. The study revealed that PRopt at any instant during a 60-s maximal sprint can be estimated accurately using a mono-exponential equation. In an isokinetic mode, a mean PRopt can be identified that enables the athlete to generate the highest mean power output over the course of the effort. Adding the time domain to the fatigue-free F/v and P/v profiles allows time-dependent cycling power to be modelled independent of cadence.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3674
Author(s):  
Tak Hiong Wong ◽  
Alexiaa Sim ◽  
Stephen F. Burns

Dietary nitrate supplementation has shown promising ergogenic effects on endurance exercise. However, at present there is no systematic analysis evaluating the effects of acute or chronic nitrate supplementation on performance measures during high-intensity interval training (HIIT) and sprint interval training (SIT). The main aim of this systematic review and meta-analysis was to evaluate the evidence for supplementation of dietary beetroot—a common source of nitrate—to improve peak and mean power output during HIIT and SIT. A systematic literature search was carried out following PRISMA guidelines and the PICOS framework within the following databases: PubMed, ProQuest, ScienceDirect, and SPORTDiscus. Search terms used were: ((nitrate OR nitrite OR beetroot) AND (HIIT or high intensity or sprint interval or SIT) AND (performance)). A total of 17 studies were included and reviewed independently. Seven studies applied an acute supplementation strategy and ten studies applied chronic supplementation. The standardised mean difference for mean power output showed an overall trivial, non-significant effect in favour of placebo (Hedges’ g = −0.05, 95% CI −0.32 to 0.21, Z = 0.39, p = 0.69). The standardised mean difference for peak power output showed a trivial, non-significant effect in favour of the beetroot juice intervention (Hedges’ g = 0.08, 95% CI -0.14 to 0.30, Z = 0.72, p = 0.47). The present meta-analysis showed trivial statistical heterogeneity in power output, but the variation in the exercise protocols, nitrate dosage, type of beetroot products, supplementation strategy, and duration among studies restricted a firm conclusion of the effect of beetroot supplementation on HIIT performance. Our findings suggest that beetroot supplementation offers no significant improvement to peak or mean power output during HIIT or SIT. Future research could further examine the ergogenic potential by optimising the beetroot supplementation strategy in terms of dosage, timing, and type of beetroot product. The potential combined effect of other ingredients in the beetroot products should not be undermined. Finally, a chronic supplementation protocol with a higher beetroot dosage (>12.9 mmol/day for 6 days) is recommended for future HIIT and SIT study.


Author(s):  
Ching-Feng Cheng ◽  
Yu-Hsuan Kuo ◽  
Wei-Chieh Hsu ◽  
Chu Chen ◽  
Chi-Hsueh Pan

The aim of this study was to investigate the effects of local (LIPC) and remote (RIPC) ischemic preconditioning on sprint interval exercise (SIE) performance. Fifteen male collegiate basketball players underwent a LIPC, RIPC, sham (SHAM), or control (CON) trial before conducting six sets of a 30-s Wingate-based SIE test. The oxygen uptake and heart rate were continuously measured during SIE test. The total work in the LIPC (+2.2%) and RIPC (+2.5%) conditions was significantly higher than that in the CON condition (p < 0.05). The mean power output (MPO) at the third and fourth sprint in the LIPC (+4.5%) and RIPC (+4.9%) conditions was significantly higher than that in the CON condition (p < 0.05). The percentage decrement score for MPO in the LIPC and RIPC condition was significantly lower than that in the CON condition (p < 0.05). No significant interaction effects were found in pH and blood lactate concentrations. There were no significant differences in the accumulated exercise time at ≥80%, 90%, and 100% of maximal oxygen uptake during SIE. Overall, both LIPC and RIPC could improve metabolic efficiency and performance during SIE in athletes.


2021 ◽  
Vol 11 (18) ◽  
pp. 8329
Author(s):  
Michal Krzysztofik ◽  
Rafal Kalinowski ◽  
Aleksandra Filip-Stachnik ◽  
Michal Wilk ◽  
Adam Zajac

Post-activation performance enhancement remains a topic of debate in sport science. The purpose of this study was to examine the effects of lower-body plyometric conditioning activity (CA) with a self-selected intra-complex rest interval on upper and lower-body volleyball specific performance. Eleven resistance-trained female volleyball players participated in the study (age: 20 ± 2 years; body mass: 67.8 ± 4.4 kg; height: 178 ± 6 cm; half back squat one-repetition maximum: 78.6 ± 10.2 kg; experience in resistance training: 5.5 ± 2.1 years and in volleyball training: 10 ± 2.3 years). Each participant performed a plyometric CA followed by two different sport-specific tests: an attack jump and a standing spike attack. The changes in jump height (JH), relative mean power output (MP) and ball velocity (BV) were analyzed before and after the CA with self-selected rest intervals. The applied plyometric CA with self-selected intra-complex rest intervals led to an insignificant decline in JH (p = 0.594; effect size [ES]: −0.27) and MP (p = 0.328; ES: −0.46) obtained during the attack jump as well as a significant decline in BV (p = 0.029; ES: −0.72) during the standing spike attack. This study showed that a plyometric CA with self-selected intra-complex rest intervals failed to elicit localized and non-localized PAPE effect in a group of sub-elite volleyball players.


2021 ◽  
Author(s):  
Haoran Meng ◽  
Hao Su ◽  
Jia Guo ◽  
Timing Qu ◽  
Liping Lei

Abstract A wind-tunnel experimental study was performed to investigate the impact of the surge and sway motions of a wind turbine model on the power output, rotor thrust and wake characteristics. A wind turbine model was mounted on a translation platform to simulate the surge and sway motions under given amplitude and frequency. The power output and rotor thrust of the turbine model subjected to surge and sway motions were measured by using a DC variable electronic load and a six-component force sensor, respectively. For comparison, these measurements were also performed in a bottom-fixed wind turbine. The results show that the mean power output and mean rotor thrust of the turbine model under surge and sway motions are almost the same as those of the bottom-fixed turbine. However, the thrust fluctuation amplitude of the turbine model under surge motion is significantly higher than those of the turbine model under sway motion and the bottom-fixed turbine. In addition, the wake characteristics of the turbine model were also investigated by using a particle image velocimetry system. The results show that the surge and sway motions have slight effect on the near and intermediate wake of the turbine model in the horizontal plane at the rotor hub height.


Author(s):  
Martin Faulhaber ◽  
Katharina Gröbner ◽  
Linda Rausch ◽  
Hannes Gatterer ◽  
Verena Menz

The present project compared acute hypoxia-induced changes in lactate thresholds (methods according to Mader, Dickhuth and Cheng) with changes in high-intensity endurance performance. Six healthy and well-trained volunteers conducted graded cycle ergometer tests in normoxia and in acute normobaric hypoxia (simulated altitude 3000 m) to determine power output at three lactate thresholds (PMader, PDickhuth, PCheng). Subsequently, participants performed two maximal 30-min cycling time trials in normoxia (test 1 for habituation) and one in normobaric hypoxia to determine mean power output (Pmean). PMader, PDickhuth and PCheng decreased significantly from normoxia to hypoxia by 18.9 ± 9.6%, 18.4 ± 7.3%, and 11.5 ± 6.0%, whereas Pmean decreased by only 8.3 ± 1.6%. Correlation analyses revealed strong and significant correlations between Pmean and PMader (r = 0.935), PDickhuth (r = 0.931) and PCheng (r = 0.977) in normoxia and partly weaker significant correlations between Pmean and PMader (r = 0.941), PDickhuth (r = 0.869) and PCheng (r = 0.887) in hypoxia. PMader and PCheng did not significantly differ from Pmean (p = 0.867 and p = 0.784) in normoxia, whereas this was only the case for PCheng (p = 0.284) in hypoxia. Although investigated in a small and select sample, the results suggest a cautious application of lactate thresholds for exercise intensity prescription in hypoxia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nicki Winfield Almquist ◽  
Øyvind Sandbakk ◽  
Bent R. Rønnestad ◽  
Dionne Noordhof

Although the ability to sprint repeatedly is crucial in road cycling races, the changes in aerobic and anaerobic power when sprinting during prolonged cycling has not been investigated in competitive elite cyclists. Here, we used the gross efficiency (GE)-method to investigate: (1) the absolute and relative aerobic and anaerobic contributions during 3 × 30-s sprints included each hour during a 3-h low-intensity training (LIT)-session by 12 cyclists, and (2) how the energetic contribution during 4 × 30-s sprints is affected by a 14-d high-volume training camp with (SPR, n = 9) or without (CON, n = 9) inclusion of sprints in LIT-sessions. The aerobic power was calculated based on GE determined before, after sprints, or the average of the two, while the anaerobic power was calculated by subtracting the aerobic power from the total power output. When repeating 30-s sprints, the mean power output decreased with each sprint (p &lt; 0.001, ES:0.6–1.1), with the majority being attributed to a decrease in mean anaerobic power (first vs. second sprint: −36 ± 15 W, p &lt; 0.001, ES:0.7, first vs. third sprint: −58 ± 16 W, p &lt; 0.001, ES:1.0). Aerobic power only decreased during the third sprint (first vs. third sprint: −17 ± 5 W, p &lt; 0.001, ES:0.7, second vs. third sprint: 16 ± 5 W, p &lt; 0.001, ES:0.8). Mean power output was largely maintained between sets (first set: 786 ± 30 W vs. second set: 783 ± 30 W, p = 0.917, ES:0.1, vs. third set: 771 ± 30 W, p = 0.070, ES:0.3). After a 14-d high-volume training camp, mean power output during the 4 × 30-s sprints increased on average 25 ± 14 W in SPR (p &lt; 0.001, ES:0.2), which was 29 ± 20 W more than CON (p = 0.008, ES: 0.3). In SPR, mean anaerobic power and mean aerobic power increased by 15 ± 13 W (p = 0.026, ES:0.2) and by 9 ± 6 W (p = 0.004, ES:0.2), respectively, while both were unaltered in CON. In conclusion, moderate decreases in power within sets of repeated 30-s sprints are primarily due to a decrease in anaerobic power and to a lesser extent in aerobic power. However, the repeated sprint-ability (multiple sets) and corresponding energetic contribution are maintained during prolonged cycling in elite cyclists. Including a small number of sprints in LIT-sessions during a 14-d training camp improves sprint-ability mainly through improved anaerobic power.


2021 ◽  
pp. 003151252110024
Author(s):  
Christopher G. Ballmann ◽  
Mason L. Favre ◽  
Matthew T. Phillips ◽  
Rebecca R. Rogers ◽  
Joseph A. Pederson ◽  
...  

The purpose of this study was to examine the effects of listening to pre-exercise music on bench press performance. We recruited 10 resistance trained males (M age= 22.8, SD = 5.8 years; M height= 173.7, SD = 8.3 cm; M body mass = 81.0, SD = 18.2 kg) for this crossover counterbalanced research design. Participants completed two bench press exercise trials of (a) No music (NM), and (b) Pre-exercise music (PreExM) separated by at least 48 hours. For each trial, following a warm-up, participants listened to music or no music for three minutes. After this 3-minute period, they completed one set of bench press repetitions with maximum explosive intent at 75% one repetition maximum (1 RPM). We used a rotary encoder to measure power and velocity of barbell movement. After a 3-minute rest during which they again listened to music or no music, participants completed another set of repetitions to failure (RTF) at 75% of 1RM. Immediately following this second set of repetitions, we measured exercise motivation with a visual analog scale (VAS). We found that the PreExM condition increased mean power output (p = 0.005; d = 0.792) and barbell velocity (p = 0.015; d = 0.722). RTF were significantly higher during the PreExM versus NM trial (p = 0.002; d = 0.985), and motivation was significantly higher in the PreExM trial versus NM (p = 0.001; d = 0.932). These findings suggest improved muscle power explosiveness and strength-endurance when listening to music before a bench press exercise. From a practical standpoint, athletes who have the option of listening to music immediately prior to resistance exercise may benefit from its use.


2021 ◽  
Vol 78 (1) ◽  
pp. 219-228
Author(s):  
Aleksandra Filip-Stachnik ◽  
Michal Krzysztofik ◽  
Magdalena Kaszuba ◽  
Katarzyna Leznicka ◽  
Maciej Kostrzewa ◽  
...  

Abstract The main goal of this study was to evaluate the effectiveness of an acute dose of caffeine (6 mg/kg body mass (b.m.)) on power output and bar velocity during a bench press multiple-set resistance training session in participants with mild daily caffeine consumption (in the range of 1 to 3 mg/kg/b.m). Thirteen recreationally active male participants (age: 21.9 ± 1.2 years, body mass: 74.4 ± 5.3 kg, body mass index: 23.1 ± 1.6 kg/m2, bench press onerepetition maximum (1RM): 79.2 ± 14.9 kg), with daily caffeine ingestion of 1.56 ± 0.56 mg/kg/b.m., participated in the study with a randomized double-blind experimental design. Each participant performed two identical experimental sessions, 60 min after the intake of a placebo (PLAC) or 6 mg/kg/b.m. of caffeine (CAF-6). In each experimental session, participants performed 5 sets of 5 repetitions of the bench press exercise with a load equivalent to 70% 1RM. The eccentric and concentric phases of the bench press exercise were performed at maximal possible velocity in each repetition. Bar velocity was recorded with a linear position transducer and power output was calculated using velocity and load data. A two-way repeated measures ANOVA indicated no significant substance x set interaction for mean power output (MP), mean bar velocity (MV), peak power output (PP) and peak bar velocity (PV). However, there was a significant main effect of substance on MP (p < 0.01; η2 = 0.47) and MV (p < 0.01; η2 =0.45). Post hoc analysis for main effect revealed that MP and MV values in the CAF-6 group were higher than in the PLAC group in all 5 sets of the exercise (p < 0.05). In conclusion, this study demonstrated that an acute dose of caffeine before resistance exercise increased mean power output and mean bar velocity during a multiple-set bench press exercise protocol among mild caffeine users.


Sign in / Sign up

Export Citation Format

Share Document