Composite reliability model for local scour around cylindrical bridge piers

2001 ◽  
Vol 28 (3) ◽  
pp. 520-535 ◽  
Author(s):  
A Melih Yanmaz ◽  
Ozgur Cicekdag

Bridge scour is an extremely complex phenomenon because of the random characteristics of sediment laden flow in close proximity to piers and abutments. This occurrence leads to high uncertainties and unavoidable risk in bridge pier and abutment design. In this study, a composite reliability model is developed for the reliability assessment of bridge pier scour using static resistance – loading interference. Based on the physical interpretation of the phenomenon and a statistical analysis of the available information, the relative maximum scour depth (corresponding to the minimum required relative pier footing elevation) and the linear combination of the relative approach flow depth and flow Froude number are defined as the system resistance and external loading, respectively. By examining a set of laboratory and field data, a two-parameter bivariate lognormal distribution is found to represent the joint probability density function of resistance and loading. Reliability expressions are developed in terms of resistance. Use of the model is illustrated in a practical application in which a relationship is obtained between the reliability and safety factors under various return periods. This information is of importance in decision making.Key words: reliability, bridge pier, scour, resistance, loading, safety factor, return period.

2011 ◽  
Vol 14 (3) ◽  
pp. 628-645 ◽  
Author(s):  
Mujahid Khan ◽  
H. Md. Azamathulla ◽  
M. Tufail

Prediction of bridge pier scour depth is essential for safe and economical bridge design. Keeping in mind the complex nature of bridge scour phenomenon, there is a need to properly address the methods and techniques used to predict bridge pier scour. Up to the present, extensive research has been carried out for pier scour depth prediction. Different modeling techniques have been applied to achieve better prediction. This paper presents a new soft computing technique called gene-expression programming (GEP) for pier scour depth prediction using laboratory data. A functional relationship has been established using GEP and its performance is compared with other artificial intelligence (AI)-based techniques such as artificial neural networks (ANNs) and conventional regression-based techniques. Laboratory data containing 529 datasets was divided into calibration and validation sets. The performance of GEP was found to be highly satisfactory and encouraging when compared to regression equations but was slightly inferior to ANN. This slightly inferior performance of GEP compared to ANN is offset by its capability to provide compact and explicit mathematical expression for bridge scour. This advantage of GEP over ANN is the main motivation for this work. The resulting GEP models will add to the existing literature of AI-based inductive models for bridge scour modeling.


2020 ◽  
Author(s):  
Alex Corrigan ◽  
Hassan Elmubarak ◽  
Yi Xu ◽  
Panagiotis Michalis ◽  
Manousos Valyrakis

<p>Under climate change, shifting  weather conditions, (both in terms of increasing frequency and intensifying magnitude) result in increasing occurrence of catastrophic failures of the constantly exposed and ageing infrastructure, across the world. Energetic flow events, advected past hydraulic infrastructure (such as bridge piers and abutments), may lead to scour [1, 2, 3], which is the primary cause of bridge collapses, resulting in high socio-economical costs, including loss of life.</p><p>This research aims to demonstrate the use of a novel monitoring device for the assessment of scour initiated by turbulent flows. This is pursued via the use of a miniaturized instrumented particle, namely “smart-sphere”, to record directly the frequency of entrainment from its downstream placement a model bridge pier at the Water Engineering lab of the University of Glasgow [4, 5, 6]. The change in entrainment frequencies is used as a metric to assess the increasing risk to scour, with increasing flow conditions, recorded acoustic Doppler velocimetry (ADV). The utility of the method as well as the potential use of the acquired data for prediction of bridge pier scour is presented and the tool as well is discussed with the potential for use to an appropriate field site [7, 8, 9].</p><p> </p><p>Acknowledgments</p><p>This research project has been supported by Transport Scotland, under the 2019/20 Innovation Fund and the Student research award.</p><p> </p><p>References</p><p>[1] Pähtz, Th., Clark, A., Duran, O., Valyrakis, M. 2019. The physics of sediment transport initiation, cessation and entrainment across aeolian and fluvial environments, Reviews of Gephysics, https://doi.org/10.1029/2019RG000679.</p><p>[2] Yagci, O., Celik, F., Kitsikoudis, V., Kirca, O., Hodoglu, C., Valyrakis, M., Duran, Z., Kaya S. 2016. Scour patterns around individual vegetation elements, Advances in Water Resources, 97, pp 251-265, doi: 10.1016/j.advwatres.2016.10.002.</p><p>[3] Michalis, P., Saafi, M. and M.D. Judd. (2012) Integrated Wireless Sensing Technology for Surveillance and Monitoring of Bridge Scour. Proceedings of the 6th International Conference on Scour and Erosion, France, Paris, pp. 395-402.</p><p>[4] Valyrakis, M. & Pavlovskis, E. 2014. "Smart pebble” design for environmental monitoring applications, In Proceedings of the 11th International Conference on Hydroinformatics, Hamburg, Germany.</p><p>[5] Valyrakis M., A. Alexakis. 2016. Development of a “smart-pebble” for tracking sediment transport. International Conference on Fluvial Hydraulics River Flow 2016, St. Liouis, MO, 8p.</p><p>[6] Valyrakis, M., Farhadi, H. 2017. Investigating coarse sediment particles transport using PTV and “smart-pebbles” instrumented with inertial sensors, EGU General Assembly 2017, Vienna, Austria, 23-28 April 2017, id. 9980.</p><p>[7] Valyrakis, M., Diplas, P., Dancey, C.L. 2011. Prediction of coarse particle movement with adaptive neuro-fuzzy inference systems, Hydrological Processes, 25 (22). pp. 3513-3524. ISSN 0885-6087, doi:10.1002/hyp.8228.</p><p>[8] Valyrakis, M., Michalis, P., Zhang, H. 2015a. A new system for bridge scour monitoring and prediction. Proceedings of the 36th IAHR World Congress, The Hague, the Netherlands, pp. 1-4.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Youssef I. Hafez

Most existing equations for predicting local scour at bridge piers suffer from overprediction of the scour depths which results in higher foundation costs. To tackle this problem, a mathematical model for predicting bridge pier scour is developed herein based on an energy balance theory. The present study equation was compared to commonly used bridge scour equations using scour field data in USA. The developed equation has several advantages among which we have the following: it adds to the understanding of the physics of bridge pier scour, is valid for slender and wide piers, does not suffer from overprediction of scour depths, addresses clear water and live bed scour, and includes the effects of various characteristics of the bed material such as specific gravity (or density), porosity, size, and angle of repose. In addition, the developed equation accounts for the debris effect and aids in the design of scour mitigation methods such as collars, side bars, slots, and pier protective piles.


2012 ◽  
Vol 11 (5) ◽  
pp. 975-989 ◽  
Author(s):  
Luigia Brandimarte ◽  
Paolo Paron ◽  
Giuliano Di Baldassarre

Author(s):  
C.D. Anglin ◽  
R.B. Nairn ◽  
A.M. Cornett ◽  
L. Dunaszegi ◽  
J. Turnham ◽  
...  

Author(s):  
Peggy Johnson ◽  
Paul Clopper ◽  
Lyle Zevenbergen

1975 ◽  
Vol 101 (3) ◽  
pp. 545-546
Author(s):  
Peter C. Klingeman

Sign in / Sign up

Export Citation Format

Share Document