Numerical studies on the structural behaviour of composite end-plate connections

2010 ◽  
Vol 37 (6) ◽  
pp. 907-921 ◽  
Author(s):  
Aaron J. Wang

A three-dimensional (3-D) finite element model is established to predict the structural behaviour of composite end-plate connections with full incorporation of material and geometrical nonlinearities. A two-dimensional (2-D) finite element model is also proposed as a tool for a comprehensive parametric study, analysis, and design. The accuracy of both the models is verified by comparing the numerical results with those from tests and a design model. Various important structural behaviours of composite end-plate connection are also studied through the numerical and analytical simulations. These models are regarded as effective tools for conducting performance-based design of composite connections and semi-continuous beams with reasonable consideration of nonlinear deformation characteristics of both tensile reinforcements and shear connectors.

2018 ◽  
Vol 21 (12) ◽  
pp. 1777-1791
Author(s):  
Joma HM Omer ◽  
Ahmad BH Kueh ◽  
Poi-Ngian Shek

The flexural behavior of partially welded flush end-plate connections incorporating built-up hybrid beams and columns is analytically and numerically investigated. An experimentally obeying three-dimensional finite element model is first constructed. To circumvent the laborious effort of three-dimensional simulation and experimental work, a new experimentally and numerically complying equation approach is introduced for the construction of a continuous moment–rotation ( M–θ) description. For the proposed equation, two essential terms are required: the rotational stiffness, Sj,ini, obtained by employing the component method and the maximum moment, Mmax, produced using the proposed linearly distributed multi-parameter fitting technique. To demonstrate the applicability of the proposed equation, a variation in the geometric configuration of connections within the practical range is considered. Excellent agreement is noted when comparing all M–θ relationships produced by the proposed equation to those by the finite element method and experiments. In addition, the stress distribution and main deformation modes are numerically obtained, where the ranking of stress criticality is offered for all structural parts. The depth, width, flange, and web thicknesses, as well as the yield stress of the beam, have a major influence on Mmax, as predicted by the proposed equation. Also, bolts have been identified as the most critically stressed component.


2014 ◽  
Vol 41 (10) ◽  
pp. 909-917 ◽  
Author(s):  
Michael Jolie ◽  
Ayman M. El Ansary ◽  
Ashraf A. El Damatty

Truncated conical vessels are commonly used as liquid containers in elevated tanks. Despite the widespread use of this type of structure worldwide, no direct code provisions are currently available covering its seismic analysis and design. The purpose of the current study is to assess the importance of considering the vertical component of ground accelerations when analyzing and designing this type of water-storage structure. The study is conducted using an equivalent mechanical model that estimates the normal forces that develop in the tank walls when subjected to vertical excitation. In addition, a three-dimensional finite element model has been developed by modeling the walls of the tank using shell elements. The finite element model has been employed to predict maximum membrane and overall meridional stresses due to both hydrodynamic and hydrostatic pressure distributions. Comparisons have been conducted to assess the significance of considering vertical excitation and to identify the magnification in meridional stresses due to bending effects associated with support conditions and large deformations.


2018 ◽  
Vol 149 ◽  
pp. 02058
Author(s):  
A. Bahaz ◽  
S. Amara ◽  
J.P. Jaspart ◽  
J.F. Demonceau

The analysis of steel-framed building structures with full strength beam to column joints is quite standard nowadays. Buildings utilizing such framing systems are widely used in design practice. However, there is a growing recognition of significant benefits in designing joints as partial strength/semi-rigid. The design of joints within this partial strength/semi-rigid approach is becoming more and more popular. This requires the knowledge of the full nonlinear moment-rotation behaviour of the joint, which is also a design parameter. The rotational behaviour of steel semi rigid connections can be studied using the finite element method for the following three reasons: i) such models are inexpensive; ii) they allow the understanding of local effects, which are difficult to measure accurately physically, and iii) they can be used to generate extensive parametric studies. This paper presents a three-dimensional finite element model using ABAQUS software in order to identify the effect of different parameters on the behaviour of semi rigid steel beam to column end plate connections. Contact and sliding between different elements, bolt pretension and geometric and material non-linearity are included in this model. A parametric study is conducted using a model of two end-plate configurations: flush and extended end plates. The studied parameters were as follows: bolts type, end plate thickness and column web stiffener. Then, the model was calibrated and validated with experimental results taken from the literature and with the model proposed by Eurocode3. The procedure for determining the moment–rotation curve using finite element analysis is also given together with a brief explanation of how the design moment resistance and the initial rotational stiffness of the joint are obtained.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Rongqian Yang ◽  
Xuejun Zhou

In order to study the mechanical behavior of bolted beam-column connections, the accuracy and applicability of the finite element model were firstly validated according to the published experiments on end-plate connections using ABAQUS. Then, in order to discuss the mechanical behavior of connections, three semirigid connections which are convenient for prefabricated construction, including top-and-seat angle connections with web and ear plate, extended end-plate connection, and T-stub connection, were examined using numerical simulation analysis to study and compare their capacity, hysteretic behavior, ductility, and degradation characteristics in detail. The results showed that the finite element models that were built could effectively simulate the load bearing behavior of bolted connections under both single-direction loading and cyclic loading. The three connections showed good load bearing capacity. The connectors significantly affected the energy dissipation capacity under load. The extended end-plate connection demonstrated the best performance in both mechanical behavior and manufacture and installation, so it would therefore be the preferred option.


2010 ◽  
Vol 37 (11) ◽  
pp. 1437-1450 ◽  
Author(s):  
Aaron J. Wang

A comprehensive parametric study is presented in this paper, which examines numerically the structural behaviour of composite end-plate connections with different material properties and geometrical configurations adopting a two-dimensional finite element model. The study is closely related to the determination of the moment capacities of composite structural flexural members that are partially continuous at the supports. Both ductile and non-ductile shear connectors are covered to investigate the effect of flexibility of the shear connectors on the overall structural behaviour of composite end-plate connections. Moreover, the effect of the elongation limits of tensile reinforcement is also studied. It is concluded that steel beam sizes have significant effects on the structural behaviour of composite end-plate connections with non-ductile shear connectors or the tensile reinforcement with normal ductility.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document