Dynamic analysis of two dimensional simply supported orthotropic bridge decks

1978 ◽  
Vol 5 (1) ◽  
pp. 58-69 ◽  
Author(s):  
G. G. Kulkarni ◽  
S. F. Ng

Forced vibration analysis of two dimensional bridge deck structures involves complex mathematical procedures and therefore analysis is often based on beam idealization of equivalent plates. This simplification yields close agreement only for long span bridges where plate action is relatively insignificant. However, such a concept of beam idealization cannot be successfully utilized in the case of short span bridges where plate action is predominant and where the determination of the distribution of dynamic deflections and amplification factors at critical sections of such plates is of prime concern. The principal objective of the present investigation is the forced vibration analysis of longitudinally stiffened, simply supported orthotropic bridge decks utilizing a new concept of interconnected beam idealization. The theoretical analysis deals with determination of amplification factors and dynamic deflections along critical sections of the plate treated as a series of interconnected beams. The aspect ratios of the plates under investigation as series of interconnected beams are designed to cover a wide range of plate to beam transition. The theoretical analysis is supplemented by an extensive experimental programme.In conclusion, it is seen that this concept of interconnected beam idealization not only takes into account the plate action of the deck structure but also reduces greatly the complexity of mathematical formulation. A good comparison between the theoretical and the experimental results indicates that this concept can be used to advantage for analysis and, within certain limitations, for design purposes.

1992 ◽  
Vol 114 (1) ◽  
pp. 106-111 ◽  
Author(s):  
A. W. Leissa ◽  
Yi-Tzong Chern

An approximate method is presented for the forced vibration analysis of plates. It is applicable in excitation frequency ranges close to resonances. A displacement shape for the plate in the resonance region is assumed, which is either an exact or approximate representation for the corresponding free vibration mode shape. The response amplitude is determined from a proper energy balance. The method is demonstrated for two types of plates—simply supported rectangular and clamped circular—subjected to uniform transverse exciting pressure. Special considerations are indicated for cases when degenerate or closely spaced resonant frequencies are present. Both viscous and material damping are treated. Numerical comparisons between approximate and exact forced vibration solutions are made to demonstrate the accuracy of the method.


2016 ◽  
Vol 827 ◽  
pp. 263-266
Author(s):  
Vladimír Sana

This paper is focused on the assessment of serviceability of the footbridge structure, which has been excited by pedestrians and vandals. The three dimensional FE model of the footbridge structure was created for the necessities of theoretical modal analysis. Computed mode shapes and natural frequencies were subsequently used for the forced vibration analysis as an input files into MATLAB code. Results obtained by the theoretical analysis were compared with the experimental results. At the end of this paper, the comfort criterion of crossing pedestrians has been evaluated.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Trung Thanh Tran ◽  
Van Ke Tran ◽  
Pham Binh Le ◽  
Van Minh Phung ◽  
Van Thom Do ◽  
...  

This paper carries out forced vibration analysis of graphene nanoplatelet-reinforced composite laminated shells in thermal environments by employing the finite element method (FEM). Material properties including elastic modulus, specific gravity, and Poisson’s ratio are determined according to the Halpin–Tsai model. The first-order shear deformation theory (FSDT), which is based on the 8-node isoparametric element to establish the oscillation equation of shell structure, is employed in this work. We then code the computing program in the MATLAB application and examine the verification of convergence rate and reliability of the program by comparing the data of present work with those of other exact solutions. The effects of both geometric parameters and mechanical properties of materials on the forced vibration of the structure are investigated.


2020 ◽  
Vol 243 ◽  
pp. 112249 ◽  
Author(s):  
Peilin Fu ◽  
Jianghong Yuan ◽  
Xu Zhang ◽  
Guozheng Kang ◽  
Ping Wang ◽  
...  

2020 ◽  
Vol 2020 (0) ◽  
pp. 207
Author(s):  
Akira Saito ◽  
Mirei Kaneko ◽  
Takumi Namatame ◽  
Tatsuya Suzuki

Sign in / Sign up

Export Citation Format

Share Document