Compatible ground-motion time histories for new national seismic hazard maps

1998 ◽  
Vol 25 (2) ◽  
pp. 305-318 ◽  
Author(s):  
Gail M Atkinson ◽  
Igor A Beresnev

Ground-motion time histories which are compatible with the uniform hazard spectra (UHS) provided by the new national seismic hazard maps of the Geological Survey of Canada (GSC) are simulated. Time histories are simulated for the following cities: Halifax, La Malbaie, Québec, Montreal, Ottawa, Toronto, Prince George, Tofino, Vancouver, and Victoria. The target UHS for the time history simulations are the GSC 5% damped horizontal-component spectra for "firm ground" (Class B) sites for an annual probability of 1/500. The Canadian Council on Earthquake Engineering is currently considering the adoption of these maps as the seismological basis for the earthquake design requirements for future editions of the National Building Code of Canada. It is therefore useful to have compatible time histories for these spectra, in order that dynamic analysis methods requiring the use of time histories can be employed. The simulated records provide a realistic representation of ground motion for the earthquake magnitudes and distances that contribute most strongly to hazard at the selected cities and probability level. For each selected city, two horizontal components are generated for a moderate earthquake nearby, and two horizontal components are generated for a larger earthquake farther away. These records match the short- and long-period ends of the target UHS, respectively. These simulations for local and regional crustal earthquakes are based on a point-source stochastic simulation procedure. For cities in British Columbia, records are also simulated for a scenario M8.5 earthquake on the Cascadia subduction zone, using a stochastic finite-fault simulation model. Four different rupture scenarios are considered. The ground motions for this scenario event are not associated with a specific probability level, but current information suggests that their probability of occurrence is comparable to that of the 1/500 UHS (the probabilistic analyses performed for the national hazard maps do not explicitly include the Cascadia subduction event). Thus it would be reasonable to conduct engineering analyses for cities in British Columbia using both the simulated crustal-event motions and the simulated Cascadia-event motions for the Cascadia event. The time histories simulated for this study are available free of charge to all interested parties.Key words: compatible time-histories, seismic hazard, ground motions.

2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.


2021 ◽  
Author(s):  
Molly Gallahue ◽  
Leah Salditch ◽  
Madeleine Lucas ◽  
James Neely ◽  
Susan Hough ◽  
...  

<div> <p>Probabilistic seismic hazard assessments forecast levels of earthquake shaking that should be exceeded with only a certain probability over a given period of time are important for earthquake hazard mitigation. These rely on assumptions about when and where earthquakes will occur, their size, and the resulting shaking as a function of distance as described by ground-motion models (GMMs) that cover broad geologic regions. Seismic hazard maps are used to develop building codes.</p> </div><div> <p>To explore the robustness of maps’ shaking forecasts, we consider how maps hindcast past shaking. We have compiled the California Historical Intensity Mapping Project (CHIMP) dataset of the maximum observed seismic intensity of shaking from the largest Californian earthquakes over the past 162 years. Previous comparisons between the maps for a constant V<sub>S30</sub> (shear-wave velcoity in the top 30 m of soil) of 760 m/s and CHIMP based on several metrics suggested that current maps overpredict shaking.</p> <p>The differences between the V<sub>S30</sub> at the CHIMP sites and the reference value of 760 m/s could amplify or deamplify the ground motions relative to the mapped values. We evaluate whether the V<sub>S30 </sub>at the CHIMP sites could cause a possible bias in the models. By comparison with the intensity data in CHIMP, we find that using site-specific V<sub>S30</sub> does not improve map performance, because the site corrections cause only minor differences from the original 2018 USGS hazard maps at the short periods (high frequencies) relevant to peak ground acceleration and hence MMI. The minimal differences reflect the fact that the nonlinear deamplification due to increased soil damping largely offsets the linear amplification due to low V<sub>S30</sub>. The net effects will be larger for longer periods relevant to tall buildings, where net amplification occurs. </p> <div> <p>Possible reasons for this discrepancy include limitations of the dataset, a bias in the hazard models, an over-estimation of the aleatory variability of the ground motion or that seismicity throughout the historical period has been lower than the long-term average, perhaps by chance due to the variability of earthquake recurrence. Resolving this discrepancy, which is also observed in Italy and Japan, could improve the performance of seismic hazard maps and thus earthquake safety for California and, by extension, worldwide. We also explore whether new nonergodic GMMs, with reduced aleatory variability, perform better than presently used ergodic GMMs compared to historical data.</p> </div> </div>


2020 ◽  
Vol 20 (6) ◽  
pp. 1639-1661
Author(s):  
Khalid Mahmood ◽  
Naveed Ahmad ◽  
Usman Khan ◽  
Qaiser Iqbal

Abstract. Probabilistic seismic hazard analysis of Peshawar District has been performed for a grid size of 0.01∘. The seismic sources for the target location are defined as the area polygon with uniform seismicity. The earthquake catalogue was developed based on the earthquake data obtained from different worldwide seismological networks and historical records. The earthquake events obtained at different magnitude scales were converted into moment magnitude using indigenous catalogue-specific regression relationships. The homogenized catalogue was subdivided into shallow crustal and deep-subduction-zone earthquake events. The seismic source parameters were obtained using the bounded Gutenberg–Richter recurrence law. Seismic hazard maps were prepared for peak horizontal acceleration at bedrock level using different ground motion attenuation relationships. The study revealed the selection of an appropriate ground motion prediction equation is crucial for defining the seismic hazard of Peshawar District. The inclusion of deep subduction earthquakes does not add significantly to the seismic hazard for design base ground motions. The seismic hazard map developed for shallow crustal earthquakes, including also the epistemic uncertainty, was in close agreement with the map given in the Building Code of Pakistan Seismic Provisions (2007) for a return period of 475 years on bedrock. The seismic hazard maps for other return periods i.e., 50, 100, 250, 475 and 2500 years, are also presented.


2019 ◽  
Author(s):  
Khalid Mahmood ◽  
Usman Khan ◽  
Qaiser Iqbal ◽  
Naveed Ahmad

Abstract. The probabilistic seismic hazard analysis of Peshawar District has been conducted in for a grid size of 0.01. The seismic sources for the target location are defined as the area polygon with uniform seismicity for which, the earthquake catalogues were obtained from different worldwide seismological network data. The earthquake catalogues obtained in different magnitude scale was converted into moment magnitude using regression analysis. The homogenized catalogue was then further subdivided into shallow crustal and deep subduction zone earthquake events for which, the seismic source parameters were obtained using Bounded Gutenberg-Richter Recurrence law. The seismic hazard maps were prepared in term of PGA at bedrock using the different ground motion attenuation relationships. The study shows that; the selection of appropriate ground motion prediction equation is an important factor in deciding the seismic hazard of Peshawar District. The inclusion of deep subduction earthquake does not add significantly to the seismic hazard. The calculated seismic hazard map for shallow crustal earthquake after including the epistemic uncertainty was in close agreement to that developed by BCP-2007 for a return period of 475 years on bedrock. The seismic hazard maps for other return periods i.e., 50, 100, 250, 475 and 2500 years were then prepared.


2017 ◽  
Author(s):  
Duruo Huang ◽  
Wenqi Du

Abstract. In performance-based seismic design, ground-motion time histories are needed for analyzing dynamic responses of nonlinear structural systems. However, the number of strong-motion data at design level is often limited. In order to analyze seismic performance of structures, ground-motion time histories need to be either selected from recorded strong-motion database, or numerically simulated using stochastic approaches. In this paper, a detailed procedure to select proper acceleration time histories from the Next Generation Attenuation (NGA) database for several cities in Taiwan is presented. Target response spectra are initially determined based on a local ground motion prediction equation under representative deterministic seismic hazard analyses. Then several suites of ground motions are selected for these cities using the Design Ground Motion Library (DGML), a recently proposed interactive ground-motion selection tool. The selected time histories are representatives of the regional seismic hazard, and should be beneficial to earthquake studies when comprehensive seismic hazard assessments and site investigations are yet available. Note that this method is also applicable to site-specific motion selections with the target spectra near the ground surface considering the site effect.


1999 ◽  
Vol 89 (2) ◽  
pp. 501-520 ◽  
Author(s):  
Paolo Bazzurro ◽  
C. Allin Cornell

Abstract Probabilistic seismic hazard analysis (PSHA) integrates over all potential earthquake occurrences and ground motions to estimate the mean frequency of exceedance of any given spectral acceleration at the site. For improved communication and insights, it is becoming common practice to display the relative contributions to that hazard from the range of values of magnitude, M, distance, R, and epsilon, ɛ, the number of standard deviations from the median ground motion as predicted by an attenuation equation. The proposed disaggregation procedures, while conceptually similar, differ in several important points that are often not reported by the researchers and not appreciated by the users. We discuss here such issues, for example, definition of the probability distribution to be disaggregated, different disaggregation techniques, disaggregation of R versus ln R, and the effects of different binning strategies on the results. Misconception of these details may lead to unintended interpretations of the relative contributions to hazard. Finally, we propose to improve the disaggregation process by displaying hazard contributions in terms of not R, but latitude, longitude, as well as M and ɛ. This permits a display directly on a typical map of the faults of the surrounding area and hence enables one to identify hazard-dominating scenario events and to associate them with one or more specific faults, rather than a given distance. This information makes it possible to account for other seismic source characteristics, such as rupture mechanism and near-source effects, during selection of scenario-based ground-motion time histories for structural analysis.


2003 ◽  
Vol 30 (2) ◽  
pp. 255-271 ◽  
Author(s):  
John Adams ◽  
Gail Atkinson

A new seismic hazard model, the fourth national model for Canada, has been devised by the Geological Survey of Canada to update Canada's current (1985) seismic hazard maps. The model incorporates new knowledge from recent earthquakes (both Canadian and foreign), new strong ground motion relations to describe how shaking varies with magnitude and distance, the newly recognized hazard from Cascadia subduction earthquakes, and a more systematic approach to reference site conditions. Other new innovations are hazard computation at the 2% in 50 year probability level, the use of the median ground motions, the presentation of results as uniform hazard spectra, and the explicit incorporation of uncertainty via a logic-tree approach. These new results provide a more reliable basis for characterizing seismic hazard across Canada and have been approved by the Canadian National Committee on Earthquake Engineering (CANCEE) as the basis of the seismic loads in the proposed 2005 edition of the National Building Code of Canada.Key words: seismic hazard, earthquake, probability, uniform hazard spectrum, maps, Cascadia subduction, strong ground motions, uncertainty, CANCEE, National Building Code of Canada.


Sign in / Sign up

Export Citation Format

Share Document