COMPARISON OF NICOTINAMIDE ADENINE DINUCLEOTIDE SYNTHESIS BY MYCOBACTERIUM TUBERCULOSIS AND MYCOBACTERIUM BOVIS

1966 ◽  
Vol 12 (6) ◽  
pp. 1225-1233
Author(s):  
Mary A. Dudley ◽  
Hilda Pope Willett

The R1Rv strain of M. tuberculosis utilized nicotinic acid for the synthesis of nicotinamide adenine dinucleotide (NAD). Nicotinic acid mononucleotide (NaMN) and nicotinic acid dinucleotide (NaAD) were identified among the enzymatic reaction mixture products. A comparison with M. bovis demonstrated a greater capacity for NAD synthesis by the bovine bacillus. It has been hypothesized that reduced NAD synthesis and failure to utilize intermediates which continue to be produced are responsible for the excessive nicotinic acid accumulation by M. tuberculosis.

Blood ◽  
1990 ◽  
Vol 75 (8) ◽  
pp. 1705-1710 ◽  
Author(s):  
CR Zerez ◽  
EF Jr Roth ◽  
S Schulman ◽  
KR Tanaka

Abstract Plasmodium falciparum-infected red blood cells (RBCs) are characterized by increases in the activity of glycolytic enzymes. Because nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP) are cofactors in the reactions of glycolysis and pentose phosphate shunt, we have examined NAD and NADP content in P. falciparum-infected RBCs. Although NADP content was not significantly altered, NAD content was increased approximately 10-fold in infected RBCs (66% parasitemia) compared with uninfected control RBCs. To determine the mechanism for the increase in NAD content, we examined the activity of several NAD biosynthetic enzymes. It is known that normal human RBCs make NAD exclusively from nicotinic acid and lack the capacity to make NAD from nicotinamide. We demonstrate that infected RBCs have readily detectable nicotinamide phosphoribosyltransferase (NPRT), the first enzyme in the NAD biosynthetic pathway that uses nicotinamide, and abundant nicotinamide deamidase, the enzyme that converts nicotinamide to nicotinic acid, thereby indicating that infected RBCs can make NAD from nicotinamide. In addition, infected RBCs have a threefold increase in nicotinic acid phosphoribosyltransferase (NAPRT), the first enzyme in the NAD biosynthetic pathway that uses nicotinic acid. Thus, the increase in NAD content in P falciparum-infected RBCs appears to be mediated by increases in NAD synthesis from both nicotinic acid and nicotinamide.


Blood ◽  
1990 ◽  
Vol 75 (8) ◽  
pp. 1705-1710 ◽  
Author(s):  
CR Zerez ◽  
EF Jr Roth ◽  
S Schulman ◽  
KR Tanaka

Plasmodium falciparum-infected red blood cells (RBCs) are characterized by increases in the activity of glycolytic enzymes. Because nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP) are cofactors in the reactions of glycolysis and pentose phosphate shunt, we have examined NAD and NADP content in P. falciparum-infected RBCs. Although NADP content was not significantly altered, NAD content was increased approximately 10-fold in infected RBCs (66% parasitemia) compared with uninfected control RBCs. To determine the mechanism for the increase in NAD content, we examined the activity of several NAD biosynthetic enzymes. It is known that normal human RBCs make NAD exclusively from nicotinic acid and lack the capacity to make NAD from nicotinamide. We demonstrate that infected RBCs have readily detectable nicotinamide phosphoribosyltransferase (NPRT), the first enzyme in the NAD biosynthetic pathway that uses nicotinamide, and abundant nicotinamide deamidase, the enzyme that converts nicotinamide to nicotinic acid, thereby indicating that infected RBCs can make NAD from nicotinamide. In addition, infected RBCs have a threefold increase in nicotinic acid phosphoribosyltransferase (NAPRT), the first enzyme in the NAD biosynthetic pathway that uses nicotinic acid. Thus, the increase in NAD content in P falciparum-infected RBCs appears to be mediated by increases in NAD synthesis from both nicotinic acid and nicotinamide.


Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 999-1005
Author(s):  
CR Zerez ◽  
KR Tanaka

Erythrocytes from individuals with pyruvate kinase (PK) deficiency have approximately half the total (oxidized and reduced) nicotinamide adenine dinucleotide (NAD) of normal erythrocytes. In order to elucidate the mechanism(s) for the decrease in total NAD, we examined NAD synthesis in intact erythrocytes. It is demonstrated that NAD synthesis is impaired in PK-deficient erythrocytes to a degree that is dependent on the PK activity and adenosine 5′-triphosphate (ATP) concentration of these cells. After incubation in the presence of fluoride, which simulates the characteristics of PK deficiency by inhibiting enolase, normal erythrocytes had impaired NAD synthesis and decreased ATP concentrations. Fluoride did not inhibit NAD synthesis in a hemolysate system that is not dependent on glycolysis for ATP generation. These data suggest that fluoride does not inhibit the enzymes of NAD synthesis and that impairment of NAD synthesis by fluoride is mediated by decreased ATP formation. Thus, it is concluded that impaired NAD synthesis in PK-deficient erythrocytes is caused by decreased ATP formation due to the PK deficiency. Since the rate of glycolysis is limited by the availability of NAD+, it is suggested that impaired NAD synthesis causes further ATP depletion and thereby may enhance hemolysis in PK-deficient erythrocytes.


2019 ◽  
Vol 221 (6) ◽  
pp. 989-999
Author(s):  
Jason D Simmons ◽  
Glenna J Peterson ◽  
Monica Campo ◽  
Jenny Lohmiller ◽  
Shawn J Skerrett ◽  
...  

Abstract Novel antimicrobials for treatment of Mycobacterium tuberculosis are needed. We hypothesized that nicotinamide (NAM) and nicotinic acid (NA) modulate macrophage function to restrict M. tuberculosis replication in addition to their direct antimicrobial properties. Both compounds had modest activity in 7H9 broth, but only NAM inhibited replication in macrophages. Surprisingly, in macrophages NAM and the related compound pyrazinamide restricted growth of bacille Calmette-Guérin but not wild-type Mycobacterium bovis, which both lack a functional nicotinamidase/pyrazinamidase (PncA) rendering each strain resistant to these drugs in broth culture. Interestingly, NAM was not active in macrophages infected with a virulent M. tuberculosis mutant encoding a deletion in pncA. We conclude that the differential activity of NAM and nicotinic acid on infected macrophages suggests host-specific NAM targets rather than PncA-dependent direct antimicrobial properties. These activities are sufficient to restrict attenuated BCG, but not virulent wild-type M. bovis or M. tuberculosis.


1969 ◽  
Vol 115 (4) ◽  
pp. 679-685 ◽  
Author(s):  
I. J. Ryrie ◽  
K. J. Scott

1. The relative efficiencies of nicotinate, quinolinate and nicotinamide as precursors of NAD+ were measured in the first leaf of barley seedlings. 2. In small amounts, both [14C]nicotinate and [14C]quinolinate were quickly and efficiently incorporated into NAD+ and some evidence is presented suggesting that NAD+ is formed from each via nicotinic acid mononucleotide and deamido-NAD. 3. [14C]Nicotinamide served equally well as a precursor of NAD+ and although significant amounts of [14C]NMN were detected, most of the [14C]NAD+ was derived from nicotinate intermediates formed by deamination of [14C]nicotinamide. 4. Radioactive NMN was also a product of the metabolism of [14C]nicotinate and [14C]quinolinate but most probably it arose from the breakdown of [14C]NAD+. 5. In barley leaves where the concentration of NAD+ is markedly increased by infection with Erysiphe graminis, the pathways of NAD+ biosynthesis did not appear to be altered after infection. A comparison of the rates of [14C]NAD+ formation in infected and non-infected leaves indicated that the increase in NAD+ content was not due to an increased rate of synthesis.


2020 ◽  
Author(s):  
Tae-Sik Nam ◽  
Dae-Ryoung Park ◽  
So-Young Rah ◽  
Tae-Gyu Woo ◽  
Hun Taeg Chung ◽  
...  

AbstractNicotinic acid adenine dinucleotide phosphate (NAADP) is an obligate driver of calcium signaling whose formation from other metabolites of nicotinamide adenine dinucleotide (NAD+) has remained elusive. In vitro, CD38-mediated NAADP synthesis requires an acidic pH and a nonphysiological concentration of nicotinic acid (NA). We discovered that the type II membrane form of CD38 catalyzes synthesis of NAADP by exchanging the nicotinamide moiety of nicotinamide adenine dinucleotide phosphate (NADP+) for the NA group of nicotinic acid adenine dinucleotide (NAAD) inside endolysosomes of interleukin 8 (IL8)-treated lymphokine-activated killer cells. Upon IL8 stimulation, cytosolic NADP+ is transported to acidified endolysosomes via connexin 43 via cAMP-EPAC-RAP1-PP2A signaling. Luminal CD38 then performs a base exchange reaction with the donor NA group deriving from NAAD, produced by newly described endolysosomal activities of NA phosphoribosyltransferase and NMN adenyltransferase 3. Thus, the membrane organization of endolysosomal CD38, a signal-mediated transport system for NADP+ and luminal NAD+ biosynthetic enzymes integrate signals from a chemokine and cAMP to specify the spatiotemporal mobilization of calcium to drive cell migration.


2021 ◽  
Author(s):  
Karthikeyani Chellappa ◽  
Melanie R McReynolds ◽  
Wenyun Lu ◽  
Xianfeng Zeng ◽  
Mikhail Makarov ◽  
...  

Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor in both mammals and microbes. Here we use isotope tracing to investigate the precursors supporting NAD synthesis in the gut microbiome. We find that preferred dietary NAD precursors are absorbed in the proximal part of the gastrointestinal tract and not available to microbes in the distal gut. Instead, circulating host nicotinamide enters the gut lumen and supports gut microbiome NAD synthesis. In addition, the microbiome converts nicotinamide, originating from the host circulation, into nicotinic acid. Host tissues uptake and utilize this microbiome-derived nicotinic acid for NAD synthesis, maintaining circulating nicotinic acid levels even in the absence of dietary consumption. Moreover, the main route from oral nicotinamide riboside, a widely used nutraceutical, to host NAD is via conversion into nicotinic acid by the gut microbiome. Thus, NAD precursors cycle between the host and gut microbiome to maintain NAD homeostasis.


Sign in / Sign up

Export Citation Format

Share Document