reconstituted system
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 6)

H-INDEX

36
(FIVE YEARS 1)

2021 ◽  
Vol 118 (21) ◽  
pp. e2100021118
Author(s):  
Moshe Katz ◽  
Suraj Subramaniam ◽  
Orna Chomsky-Hecht ◽  
Vladimir Tsemakhovich ◽  
Veit Flockerzi ◽  
...  

L-type voltage-gated CaV1.2 channels crucially regulate cardiac muscle contraction. Activation of β-adrenergic receptors (β-AR) augments contraction via protein kinase A (PKA)–induced increase of calcium influx through CaV1.2 channels. To date, the full β-AR cascade has never been heterologously reconstituted. A recent study identified Rad, a CaV1.2 inhibitory protein, as essential for PKA regulation of CaV1.2. We corroborated this finding and reconstituted the complete pathway with agonist activation of β1-AR or β2-AR in Xenopus oocytes. We found, and distinguished between, two distinct pathways of PKA modulation of CaV1.2: Rad dependent (∼80% of total) and Rad independent. The reconstituted system reproduces the known features of β-AR regulation in cardiomyocytes and reveals several aspects: the differential regulation of posttranslationally modified CaV1.2 variants and the distinct features of β1-AR versus β2-AR activity. This system allows for the addressing of central unresolved issues in the β-AR–CaV1.2 cascade and will facilitate the development of therapies for catecholamine-induced cardiac pathologies.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Inda Setyawati ◽  
Weronika K Stanek ◽  
Maria Majsnerowska ◽  
Lotteke J Y M Swier ◽  
Els Pardon ◽  
...  

Energy-coupling factor (ECF) transporters mediate import of micronutrients in prokaryotes. They consist of an integral membrane S-component (that binds substrate) and ECF module (that powers transport by ATP hydrolysis). It has been proposed that different S-components compete for docking onto the same ECF module, but a minimal liposome-reconstituted system, required to substantiate this idea, is lacking. Here, we co-reconstituted ECF transporters for folate (ECF-FolT2) and pantothenate (ECF-PanT) into proteoliposomes, and assayed for crosstalk during active transport. The kinetics of transport showed that exchange of S-components is part of the transport mechanism. Competition experiments suggest much slower substrate association with FolT2 than with PanT. Comparison of a crystal structure of ECF-PanT with previously determined structures of ECF-FolT2 revealed larger conformational changes upon binding of folate than pantothenate, which could explain the kinetic differences. Our work shows that a minimal in vitro system with two reconstituted transporters recapitulates intricate kinetics behaviour observed in vivo.


2020 ◽  
Author(s):  
Adriana Savova ◽  
Julia Romanov ◽  
Sascha Martens

SummarySelective autophagy removes harmful intracellular structures such as ubiquitinated, aggregated proteins ensuring cellular homeostasis. This is achieved by the encapsulation of this cargo material within autophagosomes. The cargo receptor p62/SQSTM1 mediates the phase separation of ubiquitinated proteins into condensates, which subsequently become targets for the autophagy machinery. NBR1, another cargo receptor, is a crucial regulator of condensate formation. The mechanisms of the interplay between p62 and NBR1 are not well understood. Employing a fully reconstituted system we show that two domains of NBR1, the PB1 domain which binds to p62 and the UBA domain which binds to ubiquitin, are required to promote p62-ubiquitin condensate formation. In cells, acute depletion of endogenous NBR1 reduces formation of p62 condensates, a phenotype that can be rescued by re-expression of wild-type NBR1, but not PB1 or UBA domain mutants. Our results provide mechanistic insights into the role of NBR1 in selective autophagy.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Claudia C Schmidt ◽  
Vedran Vasic ◽  
Alexander Stein

In endoplasmic reticulum-associated protein degradation (ERAD), membrane proteins are ubiquitinated, extracted from the membrane, and degraded by the proteasome. The cytosolic ATPase Cdc48 drives extraction by pulling on polyubiquitinated substrates. How hydrophobic transmembrane (TM) segments are moved from the phospholipid bilayer into cytosol, often together with hydrophilic and folded ER luminal protein parts, is not known. Using a reconstituted system with purified proteins from Saccharomyces cerevisiae, we show that the ubiquitin ligase Doa10 (Teb-4/MARCH6 in animals) is a retrotranslocase that facilitates membrane protein extraction. A substrate’s TM segment interacts with the membrane-embedded domain of Doa10 and then passively moves into the aqueous phase. Luminal substrate segments cross the membrane in an unfolded state. Their unfolding occurs on the luminal side of the membrane by cytoplasmic Cdc48 action. Our results reveal how a membrane-bound retrotranslocase cooperates with the Cdc48 ATPase in membrane protein extraction.


2020 ◽  
Author(s):  
Héliciane Palenzuela ◽  
Benjamin Lacroix ◽  
Jérémy Sallé ◽  
Katsuhiko Minami ◽  
Tomohiro Shima ◽  
...  

SUMMARYThe forces generated by Microtubules (MTs) and their associated motors orchestrate essential cellular processes ranging from vesicular trafficking to centrosome positioning [1, 2]. To date, most studies have focused on force exertion from motors anchored on a static surface, such as the cell cortex in vivo or glass surfaces in vitro [2–4]. However, motors also transport large cargos and endomembrane networks, whose hydrodynamic interactions with the viscous cytoplasm should generate sizable forces in bulk. Such forces may contribute to MT aster centration, organization and orientation [5–14], but have yet to be evidenced and studied in a minimal reconstituted system. By developing a bulk motility assay, based on stabilized MTs and dynein-coated beads freely floating in a viscous medium away from any surface, we demonstrate that the motion of a cargo exerts a pulling force on the MT and propels it in opposite direction. Quantification of resulting MT movements for different motors, motor velocities, over a range of cargo size and medium viscosities, shows that the efficiency of this mechanism is primarily determined by cargo size and MT length. Forces exerted by cargos are additive, allowing us to recapitulate tug-of-war situations, or bi-dimensional motions of minimal asters. These data also reveal unappreciated effects of the nature of viscous crowders and hydrodynamic interactions between cargos and MTs, likely relevant to understand this mode of force exertion in living cells. This study places endomembrane transport as a significant mode of MT force exertion with far-reaching consequences for cellular organization.


2019 ◽  
Author(s):  
Maire Gavagan ◽  
Erin Fagnan ◽  
Elizabeth B. Speltz ◽  
Jesse G. Zalatan

AbstractGSK3β is a multifunctional kinase that phosphorylates β-catenin in the Wnt signaling network and also acts on other protein targets in response to distinct cellular signals. To test the long-standing hypothesis that the scaffold protein Axin specifically accelerates β-catenin phosphorylation, we measured GSK3β reaction rates with multiple substrates in a minimal, biochemically-reconstituted system. We observed an unexpectedly small, ~2-fold Axin-mediated rate increase for the β-catenin reaction. The much larger effects reported previously may have arisen because Axin can rescue GSK3β from an inactive state that occurs only under highly specific conditions. Surprisingly, Axin significantly slows the reaction of GSK3β with CREB, a non-Wnt pathway substrate. When both β-catenin and CREB are present, Axin accelerates the β-catenin reaction by preventing competition with CREB. Thus, while Axin alone does not markedly accelerate the β-catenin reaction, in physiological settings where multiple GSK3β substrates are present, Axin can promote signaling specificity by suppressing interactions with competing, non-Wnt pathway targets.


2018 ◽  
Vol 6 (03) ◽  
pp. 30-38
Author(s):  
M. Ola ◽  
R. Bhaskar ◽  
Priya Patil

The advantages of oral dosage form that are responsible for its popularity are its ease of administration, patient compliance and stability of formulation. The most popular oral dosage forms beings tablets and capsules, but one important drawback of the dosage forms however is the difficulty to swallow especially when a dosage form is developed for pediatric and geriatric patient. The modern scientific and technological advancement in the pharmaceutical field had created bank of interest in reconstitutable oral suspension dosage form in the recent year. The reconstituted system is the formulation of choice when the drug stability is a major concern. Reconstitutable oral systems show the adequate chemical stability of the drug during shelf life and also reduce the weight of the final product. Dry syrup form of the drug is also useful in case of bioavailability as it has high bioavailability rather than tablets and capsules as it disintegrates in water outside of the oral cavity and directly the suspension is gone through the gastrointestinal tract. So the suspension easily absorbs in the GIT. The present review gives an account of the excipients used, methods of preparation of dry syrups along with their evaluations, their packaging, ICH guidelines.


2018 ◽  
Vol 293 (46) ◽  
pp. 17985-17996 ◽  
Author(s):  
B. McKay Wood ◽  
John P. Santa Maria ◽  
Leigh M. Matano ◽  
Christopher R. Vickery ◽  
Suzanne Walker

Modifications to the Gram-positive bacterial cell wall play important roles in antibiotic resistance and pathogenesis, but the pathway for the d-alanylation of teichoic acids (DLT pathway), a ubiquitous modification, is poorly understood. The d-alanylation machinery includes two membrane proteins of unclear function, DltB and DltD, which are somehow involved in transfer of d-alanine from a carrier protein inside the cell to teichoic acids on the cell surface. Here, we probed the role of DltD in the human pathogen Staphylococcus aureus using both cell-based and biochemical assays. We first exploited a known synthetic lethal interaction to establish the essentiality of each gene in the DLT pathway for d-alanylation of lipoteichoic acid (LTA) and confirmed this by directly detecting radiolabeled d-Ala-LTA both in cells and in vesicles prepared from mutant strains of S. aureus. We developed a partial reconstitution of the pathway by using cell-derived vesicles containing DltB, but no other components of the d-alanylation pathway, and showed that d-alanylation of previously formed lipoteichoic acid in the DltB vesicles requires the presence of purified and reconstituted DltA, DltC, and DltD, but not of the LTA synthase LtaS. Finally, based on the activity of DltD mutants in cells and in our reconstituted system, we determined that Ser-70 and His-361 are essential for d-alanylation activity, and we propose that DltD uses a catalytic dyad to transfer d-alanine to LTA. In summary, we have developed a suite of assays for investigating the bacterial DLT pathway and uncovered a role for DltD in LTA d-alanylation.


2017 ◽  
Vol 28 (6) ◽  
pp. 783-791 ◽  
Author(s):  
Latha Kallur Purushothaman ◽  
Henning Arlt ◽  
Anne Kuhlee ◽  
Stefan Raunser ◽  
Christian Ungermann

Endosomes are the major protein-sorting hubs of the endocytic pathway. They sort proteins destined for degradation into internal vesicles while in parallel recycling receptors via tubular carriers back to the Golgi. Tubule formation depends on the Rab7/Ypt7-interacting retromer complex, consisting of the sorting nexin dimer (SNX-BAR) and the trimeric cargo selection complex (CSC). Fusion of mature endosomes with the lysosome-like vacuole also requires Rab7/Ypt7. Here we solve a major problem in understanding this dual function of endosomal Rab7/Ypt7, using a fully reconstituted system, including purified, full-length yeast SNX-BAR and CSC, whose overall structure we present. We reveal that the membrane-active SNX-BAR complex displaces Ypt7 from cargo-bound CSC during formation of recycling tubules. This explains how a single Rab can coordinate recycling and fusion on endosomes.


Sign in / Sign up

Export Citation Format

Share Document