nodal roots
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 2)

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1337
Author(s):  
Yukihiro Nakamoto ◽  
Kohei Doyama ◽  
Toshikatsu Haruma ◽  
Xingyan Lu ◽  
Kazuya Tanaka ◽  
...  

Mine drainage is a vital water problem in the mining industry worldwide because of the heavy metal elements and low pH. Rhizofiltration using wetland plants is an appropriate method to remove heavy metals from the water via accumulation in the rhizosphere. Phragmites australis is one of the candidate plants for this method because of metal accumulation, forming iron plaque around the roots. At the study site, which was the mill tailings pond in the Ningyo-toge uranium mine, P. australis has been naturally growing since 1998. The results showed that P. australis accumulated Fe, Mn, and 238U in the nodal roots without/with iron plaque compared with other plant tissues. Among the 837 bacterial colonies isolated from nodal roots, 88.6% showed siderophore production activities. Considering iron plaque formation around P. australis roots, we hypothesized that microbial siderophores might influence iron plaque formation because bacterial siderophores have catechol-like functional groups. The complex of catechol or other phenolics with Fe was precipitated due to the networks between Fe and phenolic derivatives. The experiment using bacterial products of root endophytes, such as Pseudomonas spp. and Rhizobium spp., showed precipitation with Fe ions, and we confirmed that several Pseudomonas spp. and Rhizobium spp. produced unidentified phenolic compounds. In conclusion, root-endophytic bacteria such as Pseudomonas spp. and Rhizobium spp., isolated from metal-accumulating roots of P. australis, might influence iron plaque formation as the metal accumulation site. Iron plaque formation is related to tolerance in P. australis, and Pseudomonas spp. and Rhizobium spp. might indirectly contribute to tolerance. Although there are many issues to be resolved in this research, we hope that the fundamental analysis of plant-microbe interactions would be helpful for phytoremediation at mine sites.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rui Wang ◽  
Haoyan Zhao ◽  
Hailin Guo ◽  
Junqin Zong ◽  
Jianjian Li ◽  
...  

Centipedegrass [Eremochloa ophiuroides (Munro) Hack.] is a perennial warm-season grass that originated in China, and its speed of nodal rooting is important for lawn establishment. In our study, centipedegrass nodal rooting ability was limited by node aging. Transcriptome sequencing of nodal roots after 0, 2, 4, and 8 days of water culture was performed to investigate the molecular mechanisms of root development. GO enrichment and KEGG pathway analyses of DEGs indicated that plant hormone signal transduction and transcription factors might play important roles in centipedegrass nodal root growth. Among them, E3 ubiquitin-protein ligases participated in multiple hormone signal transduction pathways and interacted with transcription factors. Furthermore, an E3 ubiquitin protein ligase EoSINAT5 overexpressed in rice resulted in longer roots and more numerous root tips, while knockout of LOC_Os07g46560 (the homologous gene of EoSINAT5 in rice) resulted in shorter roots and fewer root tips. These results indicated that EoSINAT5 and its homologous gene are able to promote nodal root development. This research presents the transcriptomic analyses of centipedegrass nodal roots, and may contribute to elucidating the mechanism governing the development of nodal roots and facilitates the use of molecular breeding in improving rooting ability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel Gonzalez ◽  
Johannes Postma ◽  
Matthias Wissuwa

The rice root system develops a large number of nodal roots from which two types of lateral roots branch out, large L-types and fine S-types, the latter being unique to the species. All roots including S-types are covered by root hairs. To what extent these fine structures contribute to phosphate (P) uptake under P deficiency was investigated using a novel 3-D root growth model that treats root hairs as individual structures with their own Michaelis-Menten uptake kinetics. Model simulations indicated that nodal roots contribute most to P uptake followed by L-type lateral roots and S-type laterals and root hairs. This is due to the much larger root surface area of thicker nodal roots. This thickness, however, also meant that the investment in terms of P needed for producing nodal roots was very large. Simulations relating P costs and time needed to recover that cost through P uptake suggest that producing nodal roots represents a considerable burden to a P-starved plant, with more than 20 times longer pay-off time compared to S-type laterals and root hairs. We estimated that the P cost of these fine root structures is low enough to be recovered within a day of their formation. These results expose a dilemma in terms of optimizing root system architecture to overcome P deficiency: P uptake could be maximized by developing more nodal root tissue, but when P is growth-limiting, adding more nodal root tissue represents an inefficient use of the limiting factor P. In order to improve adaption to P deficiency in rice breeding two complementary strategies seem to exist: (1) decreasing the cost or pay-off time of nodal roots and (2) increase the biomass allocation to S-type roots and root hairs. To what extent genotypic variation exists within the rice gene pool for either strategy should be investigated.


2021 ◽  
Author(s):  
Dorien J. Vanhees ◽  
Hannah M. Schneider ◽  
Kenneth W. Loades ◽  
A. Glyn Bengough ◽  
Malcolm J. Bennett ◽  
...  

AbstractRadial expansion is a classic response of roots to mechanical impedance that has generally been assumed to aid penetration. We analysed the response of maize nodal roots to impedance to test the hypothesis that radial expansion is not related to the ability of roots to cross a compacted soil layer. Genotypes varied in their ability to cross the compacted layer, and those with a steeper approach to the compacted layer or less radial expansion in the compacted layer were more likely to cross the layer and achieve greater depth. Root radial expansion was due to cortical cell size expansion, while cortical cell file number remained constant. Genotypes and nodal root classes that exhibited radial expansion upon encountering the compacted soil layer also thickened in response to exogenous ethylene in hydroponic culture, i.e. radial expansion in response to ethylene was correlated with the thickening response to impedance in soil. We propose that ethylene insensitive roots, i.e. those that do not thicken and are able to overcome impedance, have a competitive advantage under mechanically impeded conditions as they can maintain their elongation rates. We suggest that prolonged exposure to ethylene could function as a stop signal for axial root growth.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fengdan Xu ◽  
Shulin Chen ◽  
Xiwen Yang ◽  
Sumei Zhou ◽  
Xu Chen ◽  
...  

The root of wheat consists of seminal and nodal roots. Comparatively speaking, fewer studies have been carried out on the nodal root system because of its disappearance at the early seedling stage under indoor environments. In this study, 196 accessions from the Huanghuai Wheat Region (HWR) were used to identify the characteristics of seminal and nodal root traits under different growth environments, including indoor hydroponic culture (IHC), outdoor hydroponic culture (OHC), and outdoor pot culture (OPC), for three growing seasons. The results indicated that the variation range of root traits in pot environment was larger than that in hydroponic environment, and canonical coefficients were the greatest between OHC and OPC (0.86) than those in other two groups, namely, IHC vs. OPC (0.48) and IHC vs. OHC (0.46). Most root traits were negatively correlated with spikes per area (SPA), grains per spike (GPS), and grain yield (GY), while all the seminal root traits were positively correlated with thousand-kernel weight (TKW). Genome-wide association study (GWAS) was carried out on root traits by using a wheat 660K SNP array. A total of 35 quantitative trait loci (QTLs)/chromosomal segments associated with root traits were identified under OPC and OHC. In detail, 11 and 24 QTLs were significantly associated with seminal root and nodal root traits, respectively. Moreover, 13 QTLs for number of nodal roots per plant (NRP) containing 14 stable SNPs, were distributed on chromosomes 1B, 2B, 3A, 4B, 5D, 6D, 7A, 7B, and Un. Based on LD and bioinformatics analysis, these QTLs may contain 17 genes closely related to NRP. Among them, TraesCS2B02G552500 and TraesCS7A02G428300 were highly expressed in root tissues. Moreover, the frequencies of favorable alleles of these 14 SNPs were confirmed to be less than 70% in the natural population, suggesting that the utilization of these superior genes in wheat root is still improving.


2020 ◽  
Author(s):  
Hannah M. Schneider ◽  
Jennifer T. Yang ◽  
Kathleen M. Brown ◽  
Jonathan P. Lynch

AbstractUnder nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and anatomical phenotypes for nitrogen acquisition are not well understood. Nodal root number and root cross-sectional area were evaluated in maize in field and greenhouse environments. Nodal root number and root cross-sectional area were inversely correlated under both high and low nitrogen conditions. Attenuated emergence of root nodes, as opposed to differences in the number of axial roots per node, was associated with substantially reduced root number. Greater root cross-sectional area was associated with a greater stele area and number of cortical cell files. Genotypes that produced few, thick nodal roots rather than many, thin nodal roots had deeper rooting and better shoot growth in low nitrogen environments. Fewer nodal roots offset the respiratory and nitrogen costs of thicker diameter roots, since total nodal root respiration and nitrogen content was similar for genotypes with many, thin and few, thick nodal roots. We propose that few, thick nodal roots may enable greater capture of deep soil nitrogen and improve plant performance under nitrogen stress. The interaction between an architectural and anatomical trait may be an important strategy for nitrogen acquisition. Understanding trait interactions among different root nodes has important implications in for improving crop nutrient uptake and stress tolerance.


2020 ◽  
pp. 281-304
Author(s):  
Sarah Blizard ◽  
Erin E. Sparks
Keyword(s):  

2020 ◽  
Vol 61 (7) ◽  
pp. 1297-1308 ◽  
Author(s):  
Zhaojun Liu ◽  
Ricardo Fabiano Hettwer Giehl ◽  
Anja Hartmann ◽  
Mohammad Reza Hajirezaei ◽  
Sebastien Carpentier ◽  
...  

Abstract The root system of barley plants is composed of embryogenic, seminal roots as well as lateral and nodal roots that are formed postembryonically from seminal roots and from the basal part of shoots, respectively. Due to their distinct developmental origin, seminal and nodal roots may differ in function during plant development; however, a clear comparison between these two root types has not yet been undertaken. In this study, anatomical, proteomic and physiological traits were compared between seminal and nodal roots of similar developmental stages. Nodal roots have larger diameter, larger metaxylem area and a larger number of metaxylem vessels than seminal roots. Proteome profiling uncovered a set of root-type-specific proteins, including proteins related to the cell wall and cytoskeleton organization, which could potentially be implicated with differential metaxylem development. We also found that nodal roots have higher levels of auxin, which is known to trigger metaxylem development. At millimolar nitrate supply, nodal roots had approximately 2-fold higher nitrate uptake and root-to-shoot translocation capacities than seminal roots, whereas no differences were found at micromolar nitrate supply. Since these marked differences were not reflected by the transcript levels of low-affinity nitrate transporter genes, we hypothesize that the larger metaxylem volume of nodal roots enhances predominantly the low-affinity uptake and translocation capacities of nutrients that are transported with the bulk flow of water, like nitrate.


2019 ◽  
Vol 70 (19) ◽  
pp. 5036-5039
Author(s):  
Beatriz Lagunas ◽  
Ian C Dodd ◽  
Miriam L Gifford

This article comments on:Guo H, York LM. 2019. Maize with fewer nodal roots allocates mass to more lateral and deep roots that improve nitrogen uptake and shoot growth. Journal of Experimental Botany70, 5299–5309.Yang JT, Schneider HM, Brown KM, Lynch JP. 2019. Genotypic variation and nitrogen stress effects on root anatomy in maize are node-specific. Journal of Experimental Botany70, 5311–5325.


Sign in / Sign up

Export Citation Format

Share Document