Intracellular adenosine triphosphate and cyclic adenosine 3′,5′-monophosphate concentrations during derepression of actinomycin biosynthesis

1982 ◽  
Vol 28 (12) ◽  
pp. 1396-1399 ◽  
Author(s):  
S. Chatterjee ◽  
L. C. Vining

Measurements of adenosine triphosphate and of cyclic adenosine 3′,5′-monophosphate in the mycelium of Streptomyces antibioticus during growth in a medium containing a mixture of glucose and galactose showed no marked changes in concentration during the period when glucose was exhausted and the synthesis of actinomycin began. Thus, these nucleotides do not appear to have a role in mediating catabolite repression of either carbon source utilization or antibiotic production in this organism. Since no NADP-glucohydrolase activity was detected in cell extracts, this enzyme is also excluded from apossible role in regulating actinomycin biosynthesis.

2020 ◽  
Vol 11 ◽  
Author(s):  
Stefanie Wijnants ◽  
Michael Riedelberger ◽  
Philipp Penninger ◽  
Karl Kuchler ◽  
Patrick Van Dijck

2016 ◽  
Vol 9 (1) ◽  
pp. 62-67 ◽  
Author(s):  
R. Jame ◽  
V. Zelená ◽  
B. Lakatoš ◽  
Ľ. Varečka

Abstract Five bacterial isolates were tested for their ability to generate hydrogen during anaerobic fermentation with various carbon sources. One isolate from sheep rumen was identified as Escherichia coli and four isolates belonged to Clostridium spp. Glucose, arabinose, ribose, xylose, lactose and cellobiose were used as carbon sources. Results showed that all bacterial strains could utilize these compounds, although the utilization of pentoses diminished growth yield. The excretion of monocarboxylic acids (acetate, propionate, formiate, butyrate) into medium was changed after replacing glucose by other carbon sources. Di- and tricarboxylic acids were excreted in negligible amounts only. Spectra of excreted carboxylic acids were unique for each strain and all carbon sources. All isolates produced H2 between 4—9 mmol·L−1 during the stationary phase of growth with glucose as energy source. This value was dramatically reduced when pentoses were used as carbon source. Lactose and cellobiose, starch and cellulose were suitable substrates for the H2 production in some but not all isolates. No H2 was produced by proteinaceous substrate, such as blood. Results show that both substrate utilization and physiological responses (growth, excretion of carboxylates, H2 production) are unique functions of each isolate.


2013 ◽  
Vol 79 (20) ◽  
pp. 6447-6451 ◽  
Author(s):  
Jung-Hoon Lee ◽  
Marcha L. Gatewood ◽  
George H. Jones

ABSTRACTUsing insertional mutagenesis, we have disrupted the RNase III gene,rnc, of the actinomycin-producing streptomycete,Streptomyces antibioticus. Disruption was verified by Southern blotting. The resulting strain grows more vigorously than its parent on actinomycin production medium but produces significantly lower levels of actinomycin. Complementation of therncdisruption with the wild-typerncgene fromS. antibioticusrestored actinomycin production to nearly wild-type levels. Western blotting experiments demonstrated that the disruptant did not produce full-length or truncated forms of RNase III. Thus, as is the case inStreptomyces coelicolor, RNase III is required for antibiotic production inS. antibioticus. No differences in the chemical half-lives of bulk mRNA were observed in a comparison of theS. antibioticus rncmutant and its parental strain.


1997 ◽  
Vol 43 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Stuart M. Pitson ◽  
Robert J. Seviour ◽  
Barbara M. McDougall

The effect of carbon source on the levels of three (1 → 3)-β-glucanases and a (1 → 6)-β-glucanase in the culture filtrates of the filamentous fungus Acremonium persicinum was investigated. All four enzymes were produced during growth of the fungus on (1 → 3)-, (1 → 6)-, and (1 → 3)(1 → 6)-β-glucans as well as β-linked oligoglucosides. However, only one (1 → 3)-β-glucanase and the (1 → 6)-β-glucanase were detected during growth on a range of other carbon sources including glucose, carboxymethylcellulose, and the α-glucan pullulan. The presence of glucose in the medium markedly decreased the production of all four glucanases, although the concentration required to effect complete repression of enzyme levels varied for the different enzymes. Similar repressive effects were also observed with sucrose, fructose, and galactose. The most likely explanations for these observations are that the synthesis of the (1 → 6)-β-glucanase and one of the (1 → 3)-β-glucanases is controlled by carbon catabolite repression, while the remaining two (1 → 3)-β-glucanases are inducible enzymes subject to carbon catabolite repression.Key words: (1 → 3)-β-glucanase, (1 → 6)-β-glucanase, Acremonium persicinum, regulation of synthesis, fungal β-glucanases.


2010 ◽  
Vol 56 (12) ◽  
pp. 979-986 ◽  
Author(s):  
E. Tang ◽  
C.B. Hill ◽  
G.L. Hartman

Fusarium virguliforme is the cause of sudden death syndrome in soybean. Physiological variability among isolates of the fungus is unknown. One way to measure physiologic variability is to analyze growth on different carbon sources. The carbon source utilization profiles of 18 F. virguliforme isolates were examined using the Biolog FF 96-well microplate, which contains 95 different carbon sources. The utilization of dextrin, d-mannitol, maltotriose, d-lactic acid methyl ester, N-acetyl-d-galactosamine, salicin, d-trehalose, and l-alanine differed significantly among isolates (P = 0.05). Carbon sources were grouped into 3 clusters based on their ability to promote growth of F. virguliforme, after calculating Euclidean distances among them. About 12% of the carbon sources promoted a high amount of mycelial growth, 39% promoted a medium amount of growth, and 49% promoted a low amount of mycelial growth; the latter was not significantly different from the water blank control. A hierarchical tree diagram was produced for the 18 isolates based on their carbon source utilization profiles using Ward’s hierarchical analysis method. Two main clusters of isolates were formed. One cluster represented greater average mycelial growth on all of the carbon sources than the other cluster. In this study, variability in carbon source utilization among F. virguliforme isolates was evident, but the results were not associated with geographic origin of the isolates, year collected, or published data on aggressiveness. Additional research is needed to determine if these carbon utilization profiles are associated with other biological characteristics, like spore germination, propagule formation, and saprophytic competitiveness.


Sign in / Sign up

Export Citation Format

Share Document