The nucleotide sequence of herpes simplex virus type 2 (333) glycoprotein gB2 and analysis of predicted antigenic sites

1987 ◽  
Vol 33 (10) ◽  
pp. 879-887 ◽  
Author(s):  
John C. Zwaagstra ◽  
Wai-Choi Leung

The gene coding for glycoprotein B2 (gB2) of herpes simplex virus type 2 (HSV-2) strain 333 was mapped and its nucleotide sequence determined. Open reading frame analysis deduced a polypeptide consisting of 902 amino acids and having close homology to gB1 of HSV type 1. Several predicted features of gB2 are consistent with a membrane-bound glycoprotein, i.e., a signal peptide sequence, a hydrophilic extracellular domain containing possible N-linked glycosylation sites, a hydrophobic membrane spanning sequence, and a cytoplasmic domain. Computer analysis on hydrophilicity, accessibility, and flexibility of the gB2 amino acid sequence, produced a composite surface value plot. At least nine major antigenic regions were predicted on the extracellular domain. The amino acids between residues 59–74, 127–139, 199–205, 460–476, and 580–594 exhibited the highest surface values. Comparison of the primary sequence with gB1 revealed localized regions showing amino acid diversity. Several of these locations correspond to major antigenic regions. Chou and Fasman analyses indicated that the amino acid substitutions, between positions 57–66, 461–472, and 473–481, induced changes in the secondary structure of gB. These sites could represent site-specific epitopes in the gB polypeptide.

2003 ◽  
Vol 77 (18) ◽  
pp. 10154-10161 ◽  
Author(s):  
Guofeng Cheng ◽  
Kui Yang ◽  
Bin He

ABSTRACT The γ134.5 protein of herpes simplex virus type 1 (HSV-1) functions to block the shutoff of protein synthesis involving double-stranded RNA-dependent protein kinase (PKR). In this process, the γ134.5 protein recruits cellular protein phosphatase 1 (PP1) to form a high-molecular-weight complex that dephosphorylates eIF-2α. Here we show that the γ134.5 protein is capable of mediating eIF-2α dephosphorylation without any other viral proteins. While deletion of amino acids 1 to 52 from the γ134.5 protein has no effect on eIF-2α dephosphorylation, further truncations up to amino acid 146 dramatically reduce the activity of the γ134.5 protein. An additional truncation up to amino acid 188 is deleterious, indicating that the carboxyl-terminal domain alone is not functional. Like wild-type HSV-1, the γ134.5 mutant with a truncation of amino acids 1 to 52 is resistant to interferon, and resistance to interferon is coupled to eIF-2α dephosphorylation. Intriguingly, this mutant exhibits a similar growth defect seen for the γ134.5 null mutant in infected cells. Restoration of the wild-type γ134.5 gene in the recombinant completely reverses the phenotype. These results indicate that eIF-2α dephosphorylation mediated by the γ134.5 protein is required for HSV response to interferon but is not sufficient for viral replication. Additional functions or activities of the γ134.5 protein contribute to efficient viral infection.


1999 ◽  
Vol 80 (8) ◽  
pp. 2157-2164 ◽  
Author(s):  
Hiroshi Yamada ◽  
Yue-Mei Jiang ◽  
Hong-Yan Zhu ◽  
Kyoko Inagaki-Ohara ◽  
Yukihiro Nishiyama

A rabbit polyclonal antiserum was raised against a recombinant 6×His–UL3 fusion protein expressed in Escherichia coli and used to examine the intracellular localization of the UL3 protein of herpes simplex virus type 2 (HSV-2). The antiserum reacted specifically with 31 and 34 kDa proteins in HSV-2 186-infected Vero cells and with 31 and 35 kDa proteins in UL3-expressing COS-7 cells. The UL3 protein localized both in the cytoplasm and in five to ten bright fluorescent granules in the nucleus close to the nuclear membrane at 4 h post-infection (p.i.). These structures became bigger at 5 h p.i. and showed doughnut-like forms at 6 h p.i. In transfected Vero cells, the UL3 protein localized exclusively in the nucleoplasm and specifically in the nucleolus. Five deletion mutants of the UL3 protein were constructed for transfection assays and the results showed that the region containing amino acids 100–164 was important for nucleolar localization. Moreover, green fluorescent protein (GFP)-targetting experiments showed that the region containing amino acids 100–164 was able to transport non-nucleolar GFP to the nucleolus as a fusion protein.


2007 ◽  
Vol 46 (2) ◽  
pp. 780-784 ◽  
Author(s):  
H. Kaneko ◽  
T. Kawana ◽  
K. Ishioka ◽  
E. Fukushima ◽  
T. Suzutani

Sign in / Sign up

Export Citation Format

Share Document