Cytology of irregular growth forms of Ophiostoma ulmi and Ophiostoma novo-ulmi growing through millipore filter membranes and sterilized elm wood sections

1995 ◽  
Vol 41 (12) ◽  
pp. 1095-1110 ◽  
Author(s):  
G. B. Ouellette ◽  
C. Côté ◽  
N. Méthot ◽  
H. Chamberland ◽  
J. -G. Lafontaine

When Ophiostoma ulmi or Ophiostoma novo-ulmi are grown on either 0.22- or 0.45-μm millipore filter membranes placed on impoverished agar medium, the fungus grows through these membranes and takes on various irregular pleomorphic growth forms (P-forms). Links of continuity between these forms and the more regular ones have been shown using light, confocal, and transmission electron microscopy. Tests with labelled probes, such as gold-complexed wheat germ agglutinin for chitin and β-exoglucanase for cellulosic β-1,4-glucans, have indicated that in P-forms deposition of chitin is much altered but is less so in the case of cellulosic glucan. The cytology of these forms compared with the regular fungal ones is also very different, particularly with reference to mitochondria and nuclei. Also, numerous vesiculate structures were noted in the rarely septate P-forms. Similar irregular forms with opaque contents were produced by these fungi when they were grown on sterilized elm wood sections. When these latter samples were fixed by high-pressure freezing, the following main features were noted: fungal cells with a very thin wall, slightly labelled for chitin but more intensely for cellulosic glucans; well-preserved structures, such as plasmalemma and endoplasmic reticulum; and a slightly opaque, fibril-containing extracellular sheath. Differences in labelling for galactose, whether of wall layers or cell contents, were also observed in regular and P-forms. Electron opaque bodies that labelled strongly for galactose were also numerous in P-forms in some samples.Key words: transmission electron microscopy, high-pressure freezing, gold labelling, extracellular sheaths, wall constituents.

2001 ◽  
Vol 79 (1) ◽  
pp. 49-57 ◽  
Author(s):  
C W Mims ◽  
C Rodriguez-Lother ◽  
E A Richardson

A combination of scanning and transmission electron microscopy was used to examine the host-pathogen relationship in leaves of Duchesnea indica (Andrz) Focke infected by the rust fungus Frommeëla mexicana var. indicae McCain & Hennen. Samples for transmission electron microscopy were prepared using high pressure freezing followed by freeze substitution. This protocol provided excellent preservation of both host cells and fungal haustoria. Each haustorium of F. mexicana var. indicae possessed a long slender neck with a neck band and an expanded body that contained two nuclei positioned close together. The haustorial body was lobed and sometimes even branched but lacked septa. Details of the extrahaustorial membrane that separated each haustorium from the cytoplasm of its host cell were particularly well preserved. Extensive labyrinth cell wall ingrowths developed around haustorial necks, as well as elsewhere, in infected cells. These ingrowths appeared to be identical to those present in plant transfer cells. Transfer cells are thought to be involved in intensive solute transfer over short distances. This appears to be the first report of the development of transfer cells in response to infection by a plant pathogenic fungus.Key words: haustoria, transfer cells, freeze substitution, electron microscopy.


Microscopy ◽  
2018 ◽  
Vol 67 (1) ◽  
pp. 30-36
Author(s):  
Hiroyuki Iwata ◽  
Daisuke Kawaguchi ◽  
Hiroyasu Saka

Abstract Internal modification induced in Si by a permeable pulse laser was investigated by transmission electron microscopy. A laser induced modified volume (LIMV) was a cylindrical rod along the track of a laser beam with the head at the focus of the laser beam. In the LIMV, beside voids, dislocations, micro-cracks and what had been supposed to be an unidentified high-pressure phase (hpp) of Si were observed in LIMV. The so-called ‘hpp’ was identified mostly as diamond Si.


Nematology ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 69-74
Author(s):  
Zdeněk Mráček ◽  
Jiří Nermut’ ◽  
Martina Tesařová ◽  
Vladimír Půža

Summary The lateral field pattern of infective juveniles of the nematode family Steinernematidae is an important taxonomic character. Scanning electron microscopy (SEM) shows the number of ridges and lines or incisures clearly, but does not provide other details. In the present study, ten species from six clades of Steinernematidae have been studied for their lateral field morphology using SEM and high pressure freezing (HPF) with transmission electron microscopy (TEM). Both methods indicated the same number of ridges and lines, although HPF/TEM resulted in a more detailed morphology with differences between the species. The tips of the ridges are either finely rounded or pointed and the lines are V-shaped or have a broadened bottom. These characters represent an additional pattern that may be characteristic for some species within the phylogenetic clades. Further studies of the lateral field morphology of other species is needed to ascertain whether each pattern is clade specific and phylogenetically valuable.


Sign in / Sign up

Export Citation Format

Share Document