Bacterial biosynthesis of indole-3-acetic acid

1996 ◽  
Vol 42 (3) ◽  
pp. 207-220 ◽  
Author(s):  
Cheryl L. Patten ◽  
Bernard R. Glick

Production of the phytohormone indole-3-acetic acid (IAA) is widespread among bacteria that inhabit the rhizosphere of plants. Several different IAA biosynthesis pathways are used by these bacteria, with a single bacterial strain sometimes containing more than one pathway. The level of expression of IAA depends on the biosynthesis pathway; the location of the genes involved, either on chromosomal or plasmid DNA, and their regulatory sequences; and the presence of enzymes that can convert active, free IAA into an inactive, conjugated form. The role of bacterial IAA in the stimulation of plant growth and phytopathogenesis is considered.Key words: auxin, indoleacetic acid, microbial, biosynthesis, pathways.


2021 ◽  
Vol 22 (5) ◽  
pp. 2651
Author(s):  
Linda Jahn ◽  
Uta Hofmann ◽  
Jutta Ludwig-Müller

The plant hormone indole-3-acetic acid (IAA) is one of the main signals playing a role in the communication between host and endophytes. Endophytes can synthesize IAA de novo to influence the IAA homeostasis in plants. Although much is known about IAA biosynthesis in microorganisms, there is still less known about the pathway by which IAA is synthesized in fungal endophytes. The aim of this study is to examine a possible IAA biosynthesis pathway in Cyanodermella asteris. In vitro cultures of C. asteris were incubated with the IAA precursors tryptophan (Trp) and indole, as well as possible intermediates, and they were additionally treated with IAA biosynthesis inhibitors (2-mercaptobenzimidazole and yucasin DF) to elucidate possible IAA biosynthesis pathways. It was shown that (a) C. asteris synthesized IAA without adding precursors; (b) indole-3-acetonitrile (IAN), indole-3-acetamide (IAM), and indole-3-acetaldehyde (IAD) increased IAA biosynthesis; and (c) C. asteris synthesized IAA also by a Trp-independent pathway. Together with the genome information of C. asteris, the possible IAA biosynthesis pathways found can improve the understanding of IAA biosynthesis in fungal endophytes. The uptake of fungal IAA into Arabidopsis thaliana is necessary for the induction of lateral roots and other fungus-related growth phenotypes, since the application of the influx inhibitor 2-naphthoxyacetic acid (NOA) but not the efflux inhibitor N-1-naphtylphthalamic acid (NPA) were altering these parameters. In addition, the root phenotype of the mutation in an influx carrier, aux1, was partially rescued by C. asteris.



2021 ◽  
Author(s):  
Yu Wang ◽  
Geng Wang ◽  
Jie Bai ◽  
Ning Zhao ◽  
Qingbo Wang ◽  
...  


2020 ◽  
Author(s):  
Bi-Xian Zhang ◽  
Ying-Ying Wang ◽  
Xiaomei Hu

Abstract Background: Indole-3-acetic acid (IAA) plays an important role in the growth and development of plants. Various bacteria in the rhizosphere are capable to produce IAA that acts as a signaling molecule for the communication between plants and microbes to promote the plant growth. Due to the low IAA content and various interfering analogs, it is difficult to detect and isolate IAA from microbial secondary metabolites. Results: A predominant strain with a remarkable capability to secrete IAA was identified as Enterobacter xiangfangensis BHW6 based on 16S rRNA gene sequence, the determination of average nucleotide identity (ANI) and digital DDH (dDDH). The maximum IAA content (134-1129 μg/mL) was found with the addition of 0.2-15 g/L of L-tryptophan at pH 5 for 6 days, which was 4-40 fold higher than that in the absence of L-tryptophan. The highest yield of IAA was obtained at the stationary phase of bacterial growth. An acidic culture medium was preferred for the IAA biosynthesis of the strain. The strain was tolerant and stable to produce IAA in the presence 2.5%-5% (w/v) of NaCl. IAA was then isolated through column chromatography with a mobile phase of hexane/ethyl acetate (1/2, v/v) and characterized by 1H Nuclear Magnetic Resonance (1H NMR). Conclusions: A remarkable IAA production was obtained from E. xiangfangensis BHW6 that was tryptophan–dependent. According to genomic analysis, the ipdC gene coding for the key enzyme (indole-3-pyruvate decarboxylase) was identified indicating that IAA biosynthesis was mainly through the indole-3-pyruvia acid (IPyA) pathway, which was further confirmed by intermediate assay. E. xiangfangensis BHW6 with an important economic value has great prospect in agricultural and industrial application.



2015 ◽  
Vol 44 ◽  
pp. 38-44 ◽  
Author(s):  
H. Sandhya ◽  
Rao Srinath

Suitable protocol for induction of callus and regeneration was developed from different explants viz., node, stem and leaves in Physalis minima. MS basal medium supplemented with various concentrations (1.0-4.0mg/l) of auxins like 2,4-Dichlorophenoxy acetic acid (2,4-D), α-naphthalene acetic acid (NAA) and Indole-3-acetic acid (IAA) and cytokinins (0.5-1.5mg/l) like BAP or Kn were used. All the three explants responded for induction of callus, however stem explants were found superior, followed by node and leaf. Callus induction was observed in all the auxins and combination of growth regulators used with varied mass (2010±1.10) and highest percentage of callus induction was observed from stem at 2.0mg/l 2,4-D (90%) followed by NAA (70%) and IAA (50%). Organogenesis was induced when nodal explants were transferred on MS medium supplemented with 2,4-D and Kn at various concentrations, maximum being on 2.0mg/l 2,4-D + 1.0mg/l Kn (90%). Regenerated shoots were elongated on 0.5mg/l GA3. The shoots were subsequently rooted on MS + 1.0mg/l IBA (95%) medium. Rooted shoots were hardened and acclimatized, later they were transferred to polycups containing soil, cocopeat and sand in the ratio 1:2:1.Keywords:Physalis minima, Node, Stem, Leaf, callus and growth regulators.



2021 ◽  
Vol 17 (5) ◽  
pp. 495-503
Author(s):  
Shamsiah Abdullah ◽  
Siti Nurain Roslan

One of the challenges related to propagation of Arenga pinnata is its lengthy period of seed dormancy. In this study, in vitro regeneration was carried out to determine the effect of hormonal treatment on the embryo explant of Arenga pinnata. Embryos were surface sterilized and cultured into different media supplemented with various hormones concentrations and combinations. Each treatment contained of Kinetin (KN) hormone (1.0, 2.0, and 3.0 mg/l) and in combination with indole-3-acetic acid (IAA) of 0.1, 0.2, 0.3 mg/l. The height of plumule and length of radical was observed and recorded. Treatment 8 (3 mg/ml KN + 0.1 mg/ml IAA) showed 59.09% in plumule height increment while treatment 4 (1 mg/ml KN + 0.3 mg/ml IAA) showed the highest radical increments with 93.62%. The knowledge gained in this study consequently helps us to better understand the role of KN and IAA in the in vitro regeneration protocol. Since in vitro method able to produce higher number of in vitro seedlings at one time, it is important to establish the in vitro regeneration protocol for this plant.



1997 ◽  
Vol 65 (4) ◽  
pp. 723-729 ◽  
Author(s):  
Tae-Ho Lee ◽  
Tohru Kato ◽  
Yoshinori Kanayama ◽  
Hajime Ohno ◽  
Kiyotoshi Takeno ◽  
...  




Biochemistry ◽  
1965 ◽  
Vol 4 (12) ◽  
pp. 2754-2763 ◽  
Author(s):  
L. Raymond Fox ◽  
William K. Purves ◽  
Henry I. Nakada


Sign in / Sign up

Export Citation Format

Share Document