scholarly journals Effects of Variations in Hormonal Treatments Upon In vitro Regeneration Potential in Embryo Explants of Arenga pinnata

2021 ◽  
Vol 17 (5) ◽  
pp. 495-503
Author(s):  
Shamsiah Abdullah ◽  
Siti Nurain Roslan

One of the challenges related to propagation of Arenga pinnata is its lengthy period of seed dormancy. In this study, in vitro regeneration was carried out to determine the effect of hormonal treatment on the embryo explant of Arenga pinnata. Embryos were surface sterilized and cultured into different media supplemented with various hormones concentrations and combinations. Each treatment contained of Kinetin (KN) hormone (1.0, 2.0, and 3.0 mg/l) and in combination with indole-3-acetic acid (IAA) of 0.1, 0.2, 0.3 mg/l. The height of plumule and length of radical was observed and recorded. Treatment 8 (3 mg/ml KN + 0.1 mg/ml IAA) showed 59.09% in plumule height increment while treatment 4 (1 mg/ml KN + 0.3 mg/ml IAA) showed the highest radical increments with 93.62%. The knowledge gained in this study consequently helps us to better understand the role of KN and IAA in the in vitro regeneration protocol. Since in vitro method able to produce higher number of in vitro seedlings at one time, it is important to establish the in vitro regeneration protocol for this plant.

2011 ◽  
Vol 101 (9) ◽  
pp. 1045-1051 ◽  
Author(s):  
Geneviève S. Legault ◽  
Sylvain Lerat ◽  
Philippe Nicolas ◽  
Carole Beaulieu

The virulence of Streptomyces scabiei, the causal agent of common scab, depends mainly on the production of the toxin thaxtomin A. S. scabiei also produces indole-3-acetic acid (IAA) but the role of this hormone in the interaction between pathogenic streptomycetes and plants has not yet been elucidated. Tryptophan is a biosynthetic precursor of both IAA and thaxtomin A. In this study, the effect of tryptophan on thaxtomin A and IAA production as well as its effect on the transcription of the corresponding biosynthetic genes in S. scabiei has been analyzed. In vitro IAA production depended on the availability of tryptophan. However, addition of this amino acid to the culture medium inhibited the biosynthesis of thaxtomin A. Expression of thaxtomin A biosynthetic genes nos and txtA were strongly repressed in the presence of tryptophan; however, modulation of the expression was not observed for the IAA biosynthetic genes iaaM and iaaH. The effects of an exogenous tryptophan supply on S. scabiei virulence were assessed on radish seedlings. Addition of tryptophan reduced symptoms on inoculated radish roots compared with seedlings grown in the absence of the bacterium, by way of inhibition of thaxtomin A production and increase of IAA biosynthesis.


HortScience ◽  
2010 ◽  
Vol 45 (2) ◽  
pp. 260-264 ◽  
Author(s):  
Chia-Yun Ko ◽  
Tsai-Yun Lin ◽  
Chin-Wen Ho ◽  
Jei-Fu Shaw

To establish a mass micropropagation procedure for Cephalotus follicularis, the effects of varying the strengths of solid Murashige and Skoog (MS) medium were investigated using subcultured shoot explants. After a 60-day primary culture from root mass, the regenerated shoot explants were subcultured every 60 days in solid MS medium. To facilitate shoot proliferation, liquid MS medium was applied with or without exogenous auxin and cytokinin. Our results demonstrate that shoot proliferation and survival of C. follicularis is most effective in modified MS (MMS) medium containing one-fifth or one-tenth strength macronutrients and full-strength micronutrients. Successful shoot proliferation and development of C. follicularis explants were obtained in one-fifth or one-tenth modified liquid MS medium without auxin and cytokinin or with addition of 5 μM indole 3-acetic acid/1 μM N6-benzyladenine for 45 days. The liquid medium consistently produced more explants than the solid medium and shortened the culturing time. Plantlets cultured in hormone-free one-fifth MMS medium developed greater root systems. Using the liquid culture we established, vigorous plants with extensive roots were obtained within 4 months. Plant survival in the greenhouse reached 100%.


1990 ◽  
Vol 68 (6) ◽  
pp. 1265-1270 ◽  
Author(s):  
Gilles Gay

The effect of the ectomycorrhizal fungus Hebeloma hiemale and of its culture filtrate on in vitro rooting of Pinus halepensis derooted shoot hypocotyls was studied in an attempt to determine if ectomycorrhizal fungi could enhance adventitious root formation in gymnosperms. Pinus halepensis hypocotyls did not root in the absence of hormonal treatment, whereas the rooting percentage was 87.3% in the presence of 5 μM indole-3-acetic acid (IAA). In the presence of tryptophan, which is a precursor of IAA, H. hiemale strongly enhanced rooting of hypocotyls cultivated in the absence of any hormonal treatment. In the presence of 0.1 mM tryptophan, the rooting percentage of the inoculated hypocotyls was 96.6%, whereas it was only 7.6% in the absence of the fungus. Hebeloma hiemale culture filtrate obtained in the absence of tryptophan did not contain IAA and did not stimulate rooting of the hypocotyls. In contrast, a culture filtrate obtained in the presence of tryptophan contained IAA; an ethyl acetate extract from this filtrate allowed 100% rooting. Different fractions were isolated by preparative thin-layer chromatography from the IAA-containing filtrate and studied for their effect on rooting. It was demonstrated that IAA was responsible for the rhizogenic activity of H. hiemale. These results suggest that ectomycorrhizal fungi which rapidly metabolize exogenously supplied tryptophan to IAA could be a suitable tool to enhance in vitro rooting of micropropagated gymnosperms. Key words: ectomycorrhizal fungus, indole-3-acetic acid, rooting, shoot hypocotyl, Hebeloma hiemale, Pinus halepensis.


2013 ◽  
Vol 5 (2) ◽  
pp. 220-225 ◽  
Author(s):  
Kanakapura K. NAMITHA ◽  
Pradeep S. NEGI

A highly reproducible in vitro regeneration method for tomato (Lycopersicon esculentum Mill.) cultivar ‘Arka Ahuti’ was established by using hypocotyl, leaf and cotyledon explants from in vitro raised seedlings on Murashige and Skoog medium supplemented with different concentrations and combinations of hormones 6-Benzylamino purine (2 to 4 mg/L) and Indole-3-acetic acid (0.1 to 1 mg/L). The medium supplemented with 2 mg/L 6-benzylamino purine and 0.1 mg/L indole-3-acetic acid was found to be the best for inducing direct shoot regeneration and multiple shoots per explant from hypocotyl explants. Callus induction was observed in all the explants and regeneration of shoots was also promoted by all these combinations. Shoots were transferred to the elongation medium which also induced 100% rooting. After hardening, plants were transferred to soil. Thus, a tissue culture base line was established for ‘Arka Ahuti’ cultivar of tomato for obtaining direct regeneration using hypocotyl, leaf and cotyledon as explants.


2016 ◽  
Vol 14 (1) ◽  
pp. e0802 ◽  
Author(s):  
Samira Tabatabaei ◽  
Parviz Ehsanzadeh ◽  
Hassan Etesami ◽  
Hossein A. Alikhani ◽  
Bernard R. Glick

<p>The role of plant-associated bacteria in plant physiology and metabolism is well documented, but little has been known about the roles played by <em>Pseudomonas</em> in durum wheat (<em>Triticum turgidum</em> L. var <em>durum</em>) growth and development. An<em> in vitro</em>experiment was conducted to observe the effect of the inoculation of four indole-3-acetic acid (IAA)-producing <em>Pseudomonas </em>isolates<em> </em>and exogenous IAA on seed germination traits and α-amylase activity of durum wheat. The results showed inoculation with all bacterial isolates led to a decrease in the germination percent, although the extent of the depression varied with the isolate. A significant relationship between concentrations of bacterial IAA and the germination inhibition percent in durum wheat seeds by different bacteria strains was observed. The results of this assay showed the effect of bacterial isolates on α-amylase activity after six and 8 days of inoculation was significant, while effect of these isolates on α-amylase activity after two and 4 days of inoculation was not meaningful. In addition, the exogenously applied IAA displayed a concentration-dependent effect on seed germination attributes and α-amylase activity, consistent with the possibility that the inhibitory effect of bacterial inoculation on seed germination was in consequence of bacteria-produced IAA. Therefore, it may suggested that the inhibitory role of IAA in seed germination and α-amylase activity should be taken into account during the screening of IAA-producing <em>Pseudomonas</em> isolates for durum wheat growth promoting agents.</p>


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1314 ◽  
Author(s):  
Małgorzata Kikowska ◽  
Agata Włodarczyk ◽  
Monika Rewers ◽  
Elwira Sliwinska ◽  
Elżbieta Studzińska-Sroka ◽  
...  

A protocol for C. japonica micropropagation with a confirmation of genome size stability of the in vitro-propagated plantlets was developed. The highest number of shoots multiplied in vitro was obtained on Murashige & Skoog medium (MS) with 1.0 mg L−1 N6-benzyladenine plus 1.0 mg L−1 indole-3-acetic acid. The highest number of roots was observed for the shoots on MS with 15 g L−1 sucrose plus 1.0 mg L−1 indole-3-acetic acid. The acclimatization rate was significantly high. The qualitative HPLC analyses confirmed the presence of phenolic acids and flavonoids in the extracts. The extracts from both shoot cultures and the leaves from field-grown plants revealed antioxidant activity and they exhibited moderate antimicrobial activity. The conducted research confirmed the regeneration potential of genetically-stable plants of C. japonica under in vitro conditions, the ability of the plantlets to produce polyphenols as those present in field-grown plants, as well as their antioxidant potential.


2021 ◽  
Author(s):  
Yu Wang ◽  
Geng Wang ◽  
Jie Bai ◽  
Ning Zhao ◽  
Qingbo Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shanghui Jin ◽  
Bingkai Hou ◽  
Guizhi Zhang

AbstractLeaf angle is an important agronomic trait affecting photosynthesis efficiency and crop yield. Although the mechanisms involved in the leaf angle control are intensively studied in monocots, factors contribute to the leaf angle in dicots are largely unknown. In this article, we explored the physiological roles of an Arabidopsis glucosyltransferase, UGT74D1, which have been proved to be indole-3-acetic acid (IAA) glucosyltransferase in vitro. We found that UGT74D1 possessed the enzymatic activity toward IAA glucosylation in vivo and its expression was induced by auxins. The ectopically expressed UGT74D1 obviously reduced the leaf angle with an altered IAA level, auxin distribution and cell size in leaf tissues. The expression of several key genes involved in the leaf shaping and leaf positioning, including PHYTOCHROME KINASE SUBSTRATE (PKS) genes and TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) genes, were dramatically changed by ectopic expression of UGT74D1. In addition, clear transcription changes of YUCCA genes and other auxin related genes can be observed in overexpression lines. Taken together, our data indicate that glucosyltransferase UGT74D1 could affect leaf positioning through modulating auxin homeostasis and regulating transcription of PKS and TCP genes, suggesting a potential new role of UGT74D1 in regulation of leaf angle in dicot Arabidopsis.


2012 ◽  
Vol 40 (2) ◽  
pp. 140 ◽  
Author(s):  
Hafiz Mamoon REHMAN ◽  
Iqrar Ahmad RANA ◽  
Siddra IJAZ ◽  
Ghulam MUSTAFA ◽  
Faiz Ahmad JOYIA ◽  
...  

Dalbergia sissoo Roxb. ex DC. (Sissoo) is a native forest tree species in Pakistan. Many ecological and economical uses are associated with this premier timber species, but dieback disease is of major concern. The objective of this study was to develop a protocol for in vitro regeneration of Sissoo that could serve as target material for genetic transformation, in order to improve this species. Callus formation and plantlet regeneration was achieved by culturing cotyledons, immature seeds, and mature embryos on a modified Murashige and Skoog (1962) (MS) medium supplemented with plant growth regulators. Callus induction medium containing 2.71 ?M 2, 4-dichlorophenoxyacetic acid (2,4-D) and 0.93 ?M kinetin produced better callus on all explants tested compared to other treatments, such as 8.88 ?M 6-benzylaminopurine (BA) and 2.69 ?M ?-naphthalene acetic acid (NAA), or 2.71 ?M 2, 4-D and 2.69 ?M NAA. Shoot regeneration was best on MS medium containing 1.4 ?M NAA and 8.88 ?M BA compared to other treatments, such as 1.4 ?M NAA and 9.9 ?M kinetin, or 2.86 ?M indole-3-acetic acid and 8.88 ?M BA. Murashige and Skoog medium containing 1.4 NAA ?M and 8.88 ?M BA was better in general for regeneration regardless of callus induction medium and the type of explant used. Rooting was best on half-strength MS medium with 7.35 ?M indole-3-butyric acid. Regenerated plantlets were acclimatized for plantation in the field. Preliminary genetic transformation potential of D. sissoo was evaluated by particle bombardment of callus explants with a pUbiGus vector. The bombarded tissue showed transient Gus activity 1week after bombardment. Transformation of this woody tree is possible provided excellent regeneration protocols. The best combination for regeneration explained in this study is one of such protocols.


2015 ◽  
Vol 44 ◽  
pp. 38-44 ◽  
Author(s):  
H. Sandhya ◽  
Rao Srinath

Suitable protocol for induction of callus and regeneration was developed from different explants viz., node, stem and leaves in Physalis minima. MS basal medium supplemented with various concentrations (1.0-4.0mg/l) of auxins like 2,4-Dichlorophenoxy acetic acid (2,4-D), α-naphthalene acetic acid (NAA) and Indole-3-acetic acid (IAA) and cytokinins (0.5-1.5mg/l) like BAP or Kn were used. All the three explants responded for induction of callus, however stem explants were found superior, followed by node and leaf. Callus induction was observed in all the auxins and combination of growth regulators used with varied mass (2010±1.10) and highest percentage of callus induction was observed from stem at 2.0mg/l 2,4-D (90%) followed by NAA (70%) and IAA (50%). Organogenesis was induced when nodal explants were transferred on MS medium supplemented with 2,4-D and Kn at various concentrations, maximum being on 2.0mg/l 2,4-D + 1.0mg/l Kn (90%). Regenerated shoots were elongated on 0.5mg/l GA3. The shoots were subsequently rooted on MS + 1.0mg/l IBA (95%) medium. Rooted shoots were hardened and acclimatized, later they were transferred to polycups containing soil, cocopeat and sand in the ratio 1:2:1.Keywords:Physalis minima, Node, Stem, Leaf, callus and growth regulators.


Sign in / Sign up

Export Citation Format

Share Document