Nonlinear steady-state kinetics of chloramphenicol acetyltransferase

1991 ◽  
Vol 69 (9) ◽  
pp. 630-634
Author(s):  
M. James C. Crabbe ◽  
Derek Goode

Steady-state kinetic analysis of chloramphenicol acetyltransferase showed that medium effects (higher temperatures or pH, higher ionic strengths, or lower values for dielectric constant) altered the kinetic behaviour of the enzyme with acetyl-CoA as substrate, but did not significantly affect behaviour with chloramphenicol. This was manifest as an increase in the degree of the rate equation to a 2:2 function. This is interpreted in terms of perturbations to the enzyme at or near the acetyl-CoA binding region of the enzyme.Key words: acetyl coenzyme A, chloramphenicol, antibiotics, enzyme kinetics.

1979 ◽  
Author(s):  
U. Christensen ◽  
H-H. Ipsen

The steady state kinetic parameters of plasmin and trypsin catalysed hydrolysis of Bz-L-Phe-Val-Arg-pNA, L-Phe-Val-Arg-pNA, Bz-D-Phe-Val-Arg-pNA, D-Phe-Val-Arg-pNA and D-Val-Leu-Lys-pNA in the pH-range 6-9 are presented. Ionization of catalytically essential enzymic groups accounts satisfactorily for the pH-dependencies of the kinetic parameters for plas-rain and trypsin reactions with Bz-L-Phe-Val-Arg-pNA, Bz-D-Phe-Val-Arg-pNA and D-Val-Leu-Lys-pNA. The protonation of the α-amino group of L-Phe-Val-Arg-pNA and D-Phe-Val-Arg-pNA (pK=7.0) show some additional effect. The values of the catalytic constants for plasmin and trypsin reactions with these p-nitroanilides are alike those normally found for specific ester substrates, indicating that the deacylation steps are rate determining.


2012 ◽  
Vol 287 (42) ◽  
pp. 35516-35526 ◽  
Author(s):  
Linlin Zhao ◽  
Matthew G. Pence ◽  
Plamen P. Christov ◽  
Zdzislaw Wawrzak ◽  
Jeong-Yun Choi ◽  
...  

N2,3-Ethenoguanine (N2,3-ϵG) is one of the exocyclic DNA adducts produced by endogenous processes (e.g. lipid peroxidation) and exposure to bioactivated vinyl monomers such as vinyl chloride, which is a known human carcinogen. Existing studies exploring the miscoding potential of this lesion are quite indirect because of the lability of the glycosidic bond. We utilized a 2′-fluoro isostere approach to stabilize this lesion and synthesized oligonucleotides containing 2′-fluoro-N2,3-ϵ-2′-deoxyarabinoguanosine to investigate the miscoding potential of N2,3-ϵG by Y-family human DNA polymerases (pols). In primer extension assays, pol η and pol κ replicated through N2,3-ϵG, whereas pol ι and REV1 yielded only 1-base incorporation. Steady-state kinetics revealed that dCTP incorporation is preferred opposite N2,3-ϵG with relative efficiencies in the order of pol κ > REV1 > pol η ≈ pol ι, and dTTP misincorporation is the major miscoding event by all four Y-family human DNA pols. Pol ι had the highest dTTP misincorporation frequency (0.71) followed by pol η (0.63). REV1 misincorporated dTTP and dGTP with much lower frequencies. Crystal structures of pol ι with N2,3-ϵG paired to dCTP and dTTP revealed Hoogsteen-like base pairing mechanisms. Two hydrogen bonds were observed in the N2,3-ϵG:dCTP base pair, whereas only one appears to be present in the case of the N2,3-ϵG:dTTP pair. Base pairing mechanisms derived from the crystal structures explain the slightly favored dCTP insertion for pol ι in steady-state kinetic analysis. Taken together, these results provide a basis for the mutagenic potential of N2,3-ϵG.


2016 ◽  
Vol 473 (5) ◽  
pp. 651-660 ◽  
Author(s):  
Renata A.G. Reis ◽  
Patricia Ferreira ◽  
Milagros Medina ◽  
M. Cristina Nonato

Leishmania major dihydro-orotate dehydrogenase (DHODHLm) oxidizes dihydro-orotate to orotate (ORO) in the de novo pyrimidine biosynthetic pathway. The enzyme reaction mechanism was elucidated by steady- and pre-steady-state kinetics. ORO release was found to be the rate-limiting step in the overall catalysis.


1982 ◽  
Vol 35 (2) ◽  
pp. 137 ◽  
Author(s):  
RD Teasdale ◽  
PD Jeffrey ◽  
PW Kuchel ◽  
LW Nichol

A method that permits the use of measurements on the concentration of the intermediate in a coupled enzymic assay in determining the presence or absence of an interaction between the enzymes is presented. The method is shown to be closely analogous to a previously formulated procedure involving the determination of the rate of production of the final product of such a sequence and is shown to be applicable regardless of the complexity of the operative kinetic mechanisms, provided it may be assumed that all enzyme-substrate complexes are in the steady-state. Kinetic results obtained with the arginase--ornithine carbamoyltransferase couple, in which the intermediate ornithine is monitored, are examined in these terms to conclude that no heterogeneous association is operative between the enzymes.


1977 ◽  
Vol 165 (2) ◽  
pp. 255-262 ◽  
Author(s):  
R N F Thorneley ◽  
A Cornish-Bowden

The effects of MgADP and MgATP on the kinetics of a pre-steady-state electron-transfer reaction and on the steady-state kinetics of H2 evulution for nitrogenase proteins of K. pneumoniae were studied. MgADP was a competitive inhibitor of MgATP in the MgATP-induced electron transfer from the Fe-protein to the Mo-Fe-protein. A dissociation constant K′i = 20 micron was determined for MgADP. The release of MgADP or a coupled conformation change in the Fe-protein of K.pneumoniae occurred with a rate comparable with that of electron transfer, k approximately 2 × 10(2)S-1. Neither homotropic nor heterotropic interactions involving MgATP and MgADP were observed for this reaction. Steady-state kinetic data for H2 evolution exhibited heterotropic effects between MgADP and MgATP. The data have been fitted to symmetry and sequential-type models involving conformation changes in two identical subunits. The data suggest that the enzyme can bind up to molecules of either MgATP or MgADP, but is unable to bind both nucleotides simultaneously. The control of H2 evolution by the MgATP/MgADP ratio is not at the level of electron transfer between the Fe- and Mo-Fe-proteins.


2020 ◽  
Author(s):  
Christopher R. Dilmore ◽  
Jeffrey J. DeStefano

AbstractDeoxythymidine triphosphate analogs with various 3’ groups (-OH (dTTP), -H, -N3, -NH2, -F, -O- CH3, and no group (2′,3′-didehydro-2′,3′-dideoxythymidine triphosphate (d4TTP)), and those retaining the 3’-OH but with 4’ additions (4’-C-methyl, 4’-C-ethyl) or sugar ring modifications (D-carba dTTP) were evaluated using pre-steady-state kinetics in low (0.5 mM) and high (6 mM) Mg2+ with HIV reverse transcriptase (RT). All analogs showed diminished incorporation compared to dTTP ranging from about 2-fold (3’-H, -N3, and d4TTP with 6 mM Mg2+) to >10-fold (3’-NH2 and 3’-F with 0.5 mM Mg2+). The exception was 3’-O-CH3 dTTP which was incorporate profoundly more slowly than other analogs. The incorporation rate (k) using 5 µM dTTP and 0.5 mM (free) Mg2+ was modestly slower (1.6-fold) than with 6 mM Mg2+, while analogs with 3’ modifications were incorporated more slowly (2.8-5.1-fold) in 0.5 mM Mg2+. In contrast, 4’-C-methyl and D-carb, which retain the 3’-OH, were not significantly affected by Mg2+. Consistent with the above results, analogs with 3’ modifications were better inhibitors with 6 mM vs. 0.5 mM Mg2+, in primer extension reactions on a long template. Equilibrium dissociation constant (Kd) and kpol determinations for dTTP and analogs lacking a 3’-OH indicated that low Mg2+ caused a several-fold greater reduction in kpol with the analogs but had little effect on Kd. Overall, results emphasize the importance of as yet undefined interactions between Mg2+ and the 3’-OH and indicate that inhibitors with 3’-OH groups may have an advantage in a physiological setting where the concentration of free Mg2+ is low.


1984 ◽  
Vol 218 (3) ◽  
pp. 829-833 ◽  
Author(s):  
A Baici ◽  
U Seemüller

The rate constants for the inhibition of human leucocyte elastase by eglin from the leech Hirudo medicinalis were determined by using a pre-steady-state kinetic approach. kon and koff for complex-formation and dissociation were 1 × 10(6)M-1 X S-1 and 8 × 10(-4)S-1 respectively. Ki was calculated as the ratio koff/kon = 8 × 10(-10)M, the binding of eglin to elastase was reversible and the inhibition mechanism was of the fully competitive type. The mechanistic properties of the system and the biological significance of the rate constants are discussed.


Sign in / Sign up

Export Citation Format

Share Document