ctd phosphorylation
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 8)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 220 (12) ◽  
Author(s):  
Amrita Kumari ◽  
Chandan Kumar ◽  
Rajaiah Pergu ◽  
Megha Kumar ◽  
Sagar P. Mahale ◽  
...  

The dynein motor performs multiple functions in mitosis by engaging with a wide cargo spectrum. One way to regulate dynein’s cargo-binding selectivity is through the C-terminal domain (CTD) of its light intermediate chain 1 subunit (LIC1), which binds directly with cargo adaptors. Here we show that mitotic phosphorylation of LIC1-CTD at its three cdk1 sites is required for proper mitotic progression, for dynein loading onto prometaphase kinetochores, and for spindle assembly checkpoint inactivation in human cells. Mitotic LIC1-CTD phosphorylation also engages the prolyl isomerase Pin1 predominantly to Hook2-dynein-Nde1-Lis1 complexes, but not to dynein-spindly-dynactin complexes. LIC1-CTD dephosphorylation abrogates dynein-Pin1 binding, promotes prophase centrosome–nuclear envelope detachment, and impairs metaphase chromosome congression and mitotic Golgi fragmentation, without affecting interphase membrane transport. Phosphomutation of a conserved LIC1-CTD SP site in zebrafish leads to early developmental defects. Our work reveals that LIC1-CTD phosphorylation differentially regulates distinct mitotic dynein pools and suggests the evolutionary conservation of this phosphoregulation.


2021 ◽  
Vol 11 (Suppl_1) ◽  
pp. S19-S19
Author(s):  
Sohail Akhtar ◽  
Elena Kotova ◽  
Nadezhda Gerasimova ◽  
Vasily Studitsky

Background: Transcription is the central point of gene regulation where the efficient maintenance of chromatin structure during the passage of RNA polymerase (Pol II) is critical for cell survival and functioning. The phosphorylation of carboxy-terminal domain (CTD) of the large subunit (Rpb1) of Pol II plays a key role in transcription through chromatin providing the binding and dissociation of factors essential for the mRNA biogenesis. Although the regulatory effect of chromatin structure on multiple stages of transcription has been well established, the role of CTD phosphorylation itself has not been systematically addressed. Methods: The effect of differentially phosphorylated Pol II-CTD on transcript elongation through chromatin was studied using in vitro transcription system based on mononucleosomes precisely positioned on DNA. The unphosphorylated and hyperphosphorylated Pol II-CTD were obtained using yeast genetics as well as in vitro kinase or phosphatases. Transcription rate and positions of pausing were measured using authentic elongation complexes comprising Pol II having different CTD phosphorylation states. The quantitative analysis of the transcripts was conducted using denaturing PAGE. Results: We observed a significant difference in the transcription through chromatin depending on CTD phosphorylation level. Thus, experiments on transcription of nucleosomes with Pol II isoforms have shown that the hyperphosphorylated form more efficiently transcribes the nucleosome and leads to a faster accumulation of the full-length RNA product than the non-phosphorylated isoform of Pol II. The non-phosphorylated isoform of the enzyme is characterized by a stronger pause in the early nucleosomal region and a slower accumulation of the full-length RNA product. Conclusion: Hyperphosphorylated form more efficiently transcribes the nucleosome and leads to a faster accumulation of the full-length RNA product as compared with the non-phosphorylated isoform of Pol II. A preliminary model of the effect of Pol II hyperphosphorylation on nucleosomal DNA transcription is proposed.


2021 ◽  
Vol 17 (1) ◽  
pp. e1009230
Author(s):  
Ji Xi ◽  
Laura Luckenbaugh ◽  
Jianming Hu

Hepatitis B virus (HBV) capsid or core protein (HBc) contains an N-terminal domain (NTD) and a C-terminal domain (CTD) connected by a short linker peptide. HBc plays a critical role in virtually every step of viral replication, which is further modulated by dynamic phosphorylation and dephosphorylation of its CTD. While several cellular kinases have been identified that mediate HBc CTD phosphorylation, there is little information on the cellular phosphatases that mediate CTD dephosphorylation. Herein, a consensus binding motif for the protein phosphatase 2A (PP2A) regulatory subunit B56 was recognized within the HBc linker peptide. Mutations within this motif designed to block or enhance B56 binding showed pleiotropic effects on CTD phosphorylation state as well as on viral RNA packaging, reverse transcription, and virion secretion. Furthermore, linker mutations affected the HBV nuclear episome (the covalently closed circular or CCC DNA) differentially during intracellular amplification vs. infection. The effects of linker mutations on CTD phosphorylation state varied with different phosphorylation sites and were only partially consistent with the linker motif serving to recruit PP2A-B56, specifically, to dephosphorylate CTD, suggesting that multiple phosphatases and/or kinases may be recruited to modulate CTD (de)phosphorylation. Furthermore, pharmacological inhibition of PP2A could decrease HBc CTD dephosphorylation and increase the nuclear HBV episome. These results thus strongly implicate the HBc linker in recruiting PP2A and other host factors to regulate multiple stages of HBV replication.


Author(s):  
Nathaniel T. Burkholder ◽  
Sarah N. Sipe ◽  
Edwin E. Escobar ◽  
Mukeshkumar Venkatramani ◽  
Seema Irani ◽  
...  
Keyword(s):  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Joshua E Mayfield ◽  
Seema Irani ◽  
Edwin E Escobar ◽  
Zhao Zhang ◽  
Nathaniel T Burkholder ◽  
...  

The Positive Transcription Elongation Factor b (P-TEFb) phosphorylates Ser2 residues of the C-terminal domain (CTD) of the largest subunit (RPB1) of RNA polymerase II and is essential for the transition from transcription initiation to elongation in vivo. Surprisingly, P-TEFb exhibits Ser5 phosphorylation activity in vitro. The mechanism garnering Ser2 specificity to P-TEFb remains elusive and hinders understanding of the transition from transcription initiation to elongation. Through in vitro reconstruction of CTD phosphorylation, mass spectrometry analysis, and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we uncover a mechanism by which Tyr1 phosphorylation directs the kinase activity of P-TEFb and alters its specificity from Ser5 to Ser2. The loss of Tyr1 phosphorylation causes an accumulation of RNA polymerase II in the promoter region as detected by ChIP-seq. We demonstrate the ability of Tyr1 phosphorylation to generate a heterogeneous CTD modification landscape that expands the CTD’s coding potential. These findings provide direct experimental evidence for a combinatorial CTD phosphorylation code wherein previously installed modifications direct the identity and abundance of subsequent coding events by influencing the behavior of downstream enzymes.


2019 ◽  
Author(s):  
Joshua E. Mayfield ◽  
Seema Irani ◽  
Edwin E. Escobar ◽  
Zhao Zhang ◽  
Nathanial T. Burkholder ◽  
...  

SummaryThe Positive Transcription Elongation Factor b (P-TEFb) phosphorylates Ser2 residues of RNA polymerase II’s C-terminal domain (CTD) and is essential for the transition from transcription initiation to elongation in vivo. Surprisingly, P-TEFb exhibits Ser5 phosphorylation activity in vitro. The mechanism garnering Ser2 specificity to P-TEFb remains elusive and hinders understanding of the transition from transcription initiation to elongation. Through in vitro reconstruction of CTD phosphorylation, mass spectrometry analysis, and chromatin immunoprecipitation sequencing (ChIP-seq) analysis we uncover a mechanism by which Tyr1 phosphorylation directs the kinase activity of P-TEFb and alters its specificity from Ser5 to Ser2. The loss of Tyr1 phosphorylation causes a reduction of phosphorylated Ser2 and accumulation of RNA polymerase II in the promoter region as detected by ChIP-seq. We demonstrate the ability of Tyr1 phosphorylation to generate a heterogeneous CTD modification landscape that expands the CTD’s coding potential. These findings provide direct experimental evidence for a combinatorial CTD phosphorylation code wherein previously installed modifications direct the identity and abundance of subsequent coding events by influencing the behavior of downstream enzymes.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Nathaniel Tate Burkholder ◽  
Sarah Sipe ◽  
Mukesh Kumar ◽  
Edwin Escobar ◽  
Seema Irani ◽  
...  

2018 ◽  
Author(s):  
M. Boehning ◽  
C. Dugast-Darzacq ◽  
M. Rankovic ◽  
A. S. Hansen ◽  
T. Yu ◽  
...  

The carboxy-terminal domain (CTD) of RNA polymerase (Pol) II is an intrinsically disordered low-complexity region that is critical for pre-mRNA transcription and processing. The CTD consists of hepta-amino acid repeats varying in number from 52 in humans to 26 in yeast. Here we report that human and yeast CTDs undergo cooperative liquid phase separation at increasing protein concentration, with the shorter yeast CTD forming less stable droplets. In human cells, truncation of the CTD to the length of the yeast CTD decreases Pol II clustering and chromatin association whereas CTD extension has the opposite effect. CTD droplets can incorporate intact Pol II and are dissolved by CTD phosphorylation with the transcription initiation factor IIH kinase CDK7. Together with published data, our results suggest that Pol II forms clusters/hubs at active genes through interactions between CTDs and with activators, and that CTD phosphorylation liberates Pol II enzymes from hubs for promoter escape and transcription elongation.


2018 ◽  
Author(s):  
Melvin Noe Gonzalez ◽  
Shigeo Sato ◽  
Chieri Tomomori-Sato ◽  
Joan W. Conaway ◽  
Ronald C. Conaway

AbstractCo-transcriptional capping of RNA polymerase II (Pol II) transcripts by capping enzyme proceeds orders of magnitude more efficiently than capping of free RNA. Previous studies brought to light a role for the phosphorylated Pol II CTD in activation of co-transcriptional capping; however, CTD phosphorylation alone could not account for the observed magnitude of activation. Here, we exploit a defined Pol II transcription system that supports both CTD phosphorylation and robust activation of capping to dissect the mechanism of co-transcriptional capping. Taken together, our findings identify a novel CTD-independent, but Pol II-mediated, mechanism that functions in parallel with CTD-dependent processes to ensure optimal capping, and they support a “tethering” model for the mechanism of activation.


Sign in / Sign up

Export Citation Format

Share Document