Quantum mechanical versus quasi-classical tunneling times for smooth potential barriers

2003 ◽  
Vol 81 (3) ◽  
pp. 573-581 ◽  
Author(s):  
M R.A. Shegelski ◽  
E V Kozijn

For smooth potential barriers, we compare the quasi-classical tunneling time with an expression that gives a fully quantum mechanical tunneling time. The expression we choose for the quantum mechanical tunneling time is one that has heuristic value. We report results wherein this quantum mechanical tunneling time and the quasi-classical time differ significantly, both quantitatively and qualitatively. To determine the reasons for these differences, we compare the trends in the two times that result from varying the potential. Our findings suggest that, for smooth potential barriers, the quasi-classical tunneling time is unreliable for many cases where it is employed. PACS Nos.: 03.65Xp, 03.65-w

1992 ◽  
Author(s):  
Marc M. Cahay ◽  
T. Dichiaro ◽  
P. Thanikasalam ◽  
Ramasubraman Venkatasubramanian

Author(s):  
Luís P. Viegas ◽  
Cláudio Manaia Nunes ◽  
Rui Fausto

In 1975, Buchwalter and Closs reported one of the first examples of heavy-atom quantum mechanical tunneling (QMT) by studying the ring closure of triplet cyclopentane-1,3-diyl to singlet bicyclo[2.1.0]pentane in cryogenic...


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Morten Willatzen ◽  
Zhong Lin Wang

A simple model of charge transfer by loss-less quantum-mechanical tunneling between two solids is proposed. The model is applicable to electron transport and contact electrification between e.g. a metal and a dielectric solid. Based on a one-dimensional effective-mass Hamiltonian, the tunneling transmission coefficient of electrons through a barrier from one solid to another solid is calculated analytically. The transport rate (current) of electrons is found using the Tsu-Esaki equation and accounting for different Fermi functions of the two solids. We show that the tunneling dynamics is very sensitive to the vacuum potential versus the two solids conduction-band edges and the thickness of the vacuum gap. The relevant time constants for tunneling and contact electrification, relevant for triboelectricity, can vary over several orders of magnitude when the vacuum gap changes by one order of magnitude, say, 1 Å to 10 Å. Coulomb repulsion between electrons on the left and right material surfaces is accounted for in the tunneling dynamics.


2007 ◽  
Vol 21 (10) ◽  
pp. 1681-1704 ◽  
Author(s):  
SWARNALI BANDOPADHYAY ◽  
A. M. JAYANNAVAR

We study the nature of tunneling phase time for various quantum mechanical structures such as networks and rings having potential barriers in their arms. We find the generic presence of the Hartman effect, with superluminal velocities as a consequence, in these systems. In quantum networks, it is possible to control the "super arrival" time in one of the arms by changing the parameters on another arm which is spatially separated from it. This is yet another quantum nonlocal effect. Negative time delays (time advancement) and "ultra Hartman effect" with negative saturation times have been observed in some parameter regimes. In the presence and absence of Aharonov-Bohm (AB) flux, quantum rings show the Hartman effect. We obtain the analytical expression for the saturated phase time. In the opaque barrier regime, this is independent of even the AB flux thereby generalizing the Hartman effect. We also briefly discuss the concept of "space collapse or space destroyer" by introducing a free space in between two barriers covering the ring. Further, we show in presence of absorption that the reflection phase time exhibits the Hartman effect in contrast to the transmission phase time.


Sign in / Sign up

Export Citation Format

Share Document