SCATTERING FROM A HALF-LOOP ON AN INFINITE PERFECTLY CONDUCTING PLANE

1967 ◽  
Vol 45 (10) ◽  
pp. 3347-3355
Author(s):  
M. A. Plonus

Scattering from a small wire loop is derived using expressions of V. H. Weston. It is shown that the scattered field can be identified with two dipole-type scatterers, an electric and a magnetic dipole. Using image theory, scattering from a half-loop on a conducting plane is obtained. The scattered field consists of contributions of an electric dipole normal to the plane and a magnetic dipole normal to the plane of the half-loop. The equivalent scattering dipole moments are expressed in terms of the loop geometry and the orientation and polarization of the incident wave.

2013 ◽  
Vol 91 (7) ◽  
pp. 576-581 ◽  
Author(s):  
A.L. Kholmetskii ◽  
O.V. Missevitch ◽  
T. Yarman

We derive a novel expression for the relativistic energy of electric and magnetic dipoles in an external electromagnetic field and discuss its implications. In particular, we find the relativistic dependence of the energy of a dipole on its velocity, v, and show that in the most convenient presentation of the energy (when the proper electric (p0) and magnetic (m0) dipole moments are involved, whereas the electric (E) and magnetic (B) fields are defined in the laboratory frame), its value essentially depends on the orientation of the velocity, v, with respect to vectors p0, E, and m0, B. To better understand the relativistic behavior of the energy of electric and magnetic dipoles, we introduce the notion of “latent” momentum of an electric dipole, in addition to the known concept of “hidden” momentum of a magnetic dipole. We finally show that the contribution of energy terms related to “hidden” and “latent” momenta of an electric or magnetic dipole is important in the relativistic case.


1989 ◽  
Vol 54 (10) ◽  
pp. 2555-2630 ◽  
Author(s):  
Dušan Papoušek

A review is given of the forbidden ( more precisely: perturbation allowed) transistions between molecular vibrational-rotational states including transistions which are induced by the electric dipole and quadrupole moments and the magnetic dipole moment. The basic theory of these transistions is outlined starting with the overall symmetry selection rules, followed by the discussion of the spin statistics isomers, approximate selection rules for the usual vibrational-rotational transistions, and forbidden transistions induced by the electric quadrupole and magnetic dipole moments. Forbidden transistions due to the vibrationally and rotationally induced electric dipole moments are the discussed in detail for symmetric top and spherical top molecules with the emphasis on the physical nature of the various phenomena leading to these transistions. A summary is also given of the most important experimental work on the forbidden transistions in diatomic molecules and polar as well as nonpolar polyatomics.


2021 ◽  
Author(s):  
Mikhail M. Bukharin ◽  
Vladimir Ya. Pecherkin ◽  
Anar K. Ospanova ◽  
Vladimir B. Il’in ◽  
Leonid M. Vasilyak ◽  
...  

Abstract Kerker effect is one of the unique phenomena in modern electrodynamics. Due to overlapping of electric and magnetic dipole moments, all-dielectric particles can be invisible in forward or backward directions. In our paper we propose new conditions between resonantly excited electric dipole and magnetic quadrupole in ceramic high index spheroidal particle for demonstrating transverse Kerker effect. Moreover, we perform proof-of-concept microwave experiment and demonstrate dumbbell radiation pattern with suppressed scattering in both forward and backward direction and enhanced scattering in lateral direction. Our concept is promising for future planar lasers, nonreflected metasurface and laterally excited waveguides and nanoantennas.


2019 ◽  
Vol 55 (8) ◽  
Author(s):  
A. Gutiérrez-Rodríguez ◽  
M. Köksal ◽  
A. A. Billur ◽  
M. A. Hernández-Ruíz

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
D. Aristizabal Sierra ◽  
R. Branada ◽  
O. G. Miranda ◽  
G. Sanchez Garcia

Abstract With large active volume sizes dark matter direct detection experiments are sensitive to solar neutrino fluxes. Nuclear recoil signals are induced by 8B neutrinos, while electron recoils are mainly generated by the pp flux. Measurements of both processes offer an opportunity to test neutrino properties at low thresholds with fairly low backgrounds. In this paper we study the sensitivity of these experiments to neutrino magnetic dipole moments assuming 1, 10 and 40 tonne active volumes (representative of XENON1T, XENONnT and DARWIN), 0.3 keV and 1 keV thresholds. We show that with nuclear recoil measurements alone a 40 tonne detector could be as competitive as Borexino, TEXONO and GEMMA, with sensitivities of order 8.0 × 10−11μB at the 90% CL after one year of data taking. Electron recoil measurements will increase sensitivities way below these values allowing to test regions not excluded by astrophysical arguments. Using electron recoil data and depending on performance, the same detector will be able to explore values down to 4.0 × 10−12μB at the 90% CL in one year of data taking. By assuming a 200-tonne liquid xenon detector operating during 10 years, we conclude that sensitivities in this type of detectors will be of order 10−12μB. Reducing statistical uncertainties may enable improving sensitivities below these values.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Joachim Brod ◽  
Emmanuel Stamou

Abstract Electric dipole moments are sensitive probes of new phases in the Higgs Yukawa couplings. We calculate the complete two-loop QCD anomalous dimension matrix for the mixing of CP-odd scalar and tensor operators and apply our results for a phenomenological study of CP violation in the bottom and charm Yukawa couplings. We find large shifts of the induced Wilson coefficients at next-to-leading-logarithmic order. Using the experimental bound on the electric dipole moments of the neutron and mercury, we update the constraints on CP-violating phases in the bottom and charm quark Yukawas.


2021 ◽  
Vol 815 ◽  
pp. 136136
Author(s):  
Michael J. Ramsey-Musolf ◽  
Juan Carlos Vasquez

Sign in / Sign up

Export Citation Format

Share Document