Level Structure of 171Tm

1972 ◽  
Vol 50 (6) ◽  
pp. 513-528 ◽  
Author(s):  
R. L. Graham ◽  
J. S. Geiger ◽  
M. W. Johns

The properties of the γ-ray transitions in 171Tm, following beta decay of 7.5 h 171Er, have been studied using an iron-free π√2 beta spectrometer and Ge(Li) detectors, singly and in coincidence. The multipolarities of 8 lower-energy γ transitions have been established from a study of L- or M-subshell-internal-conversion lines. The measured K-line intensities of 20 higher-energy transitions yield K conversion coefficients and hence additional multipolarity assignments. Gamma-ray energy measurements, together with an extensive series of gamma–gamma coincidence experiments, have been used to establish the role of 59 (out of 65) γ transitions in the 171Tm level scheme. Sixteen excited states are identified at energies of 5.025 (3/2+), 116.6 (5/2+), 129.0 (7/2+), 326.7* (9/2+), 424.8 (7/2−), 635.4 (7/2+), 675.7 (3/2+), 737.2 (5/2+), 822.3* (7/2+), 912.8 (5/2+), 998.6 (7/2+), 1225.5* (3/2, 5/2, or 7/2+), 1284.7* (5/2+), 1296.3*, 1391.2*, and 1400.5* (5/2+) keV. The asterisks indicate levels which are new or at variance with those proposed by some other workers. The coincidence data does not support a level at 861 keV proposed by two other groups of workers on the basis of energy sums. Nilsson orbital assignments are proposed and discussed for 12 levels.


1958 ◽  
Vol 36 (10) ◽  
pp. 1409-1429 ◽  
Author(s):  
S. V. Nablo ◽  
M. W. Johns ◽  
R. H. Goodman ◽  
A. Artna

The beta- and gamma-ray spectra of Os191 and Os193 have been studied with a magnetic beta-ray spectrometer, scintillation spectrometers, and coincidence circuits. The 14-hour isomer of Os191 decays via a 0.0742-Mev (M3) transition. Gamma rays of energy 0.0418 (100%, E3), 0.0809 (1%, M1 + E2), 0.1287 (100%, M1 + E2), and 0.1858 (0.1%) Mev have been found to be associated with the 14.6 ± 0.3 day decay of Os191 and an extension of the accepted decay scheme proposed. The following 19 transitions have been associated with the 31.5 ± 0.5 hour decay of Os193: 0.0730 (14%), 0.1068 (~1%), 0.1393 (10%), 0.180 (0.3%), 0.196 (0.1%), 0.243 (~0.2%), 0.2485 (0.3%), 0.2514 (0.4%), 0.278 (0.6%), 0.2810 (1.6%), 0.2885 (0.3%), 0.2994 (0.4%), 0.314 (0.3%), 0.3218 (1.7%), 0.3620 (0.6%), 0.3878 (1.6%), 0.4604 (4.1%), 0.4857 (0.3%), and 0.5585 (2.2%). The internal conversion coefficients for all the stronger transitions suggest that they are M1 + E2 in character. The decay energy of Os193 is 1.132 ± 0.005 Mev. Fermi analyses and beta–gamma coincidence experiments have established excited states of Ir193 at 0.073, 0.139, 0.281, 0.362, 0.460, and 0.559 Mev above the ground state. Six otherwise unclassified weak gamma rays can be accommodated if levels at 0.247, 0.315, and 0.613 Mev are included in the decay scheme.The activation cross sections of Os184 and Os190 are (2.2 ± 0.5) × 103and 5.3 ± 2 barns respectively, relative to Seren's value of 1.6 ± 0.4 barns for Os192.



1970 ◽  
Vol 48 (22) ◽  
pp. 2735-2750 ◽  
Author(s):  
G. C. Ball ◽  
J. S. Forster ◽  
F. Ingebretsen ◽  
C. F. Monahan

The 40Ca(α, pγ)43Sc reaction at Eα = 11.8 to 15.5 MeV has been used to investigate the level structure of 43Sc below 4.2 MeV excitation. Level energies and decay schemes were determined from proton–gamma coincidence spectra obtained using an annular surface barrier detector positioned near 180° and two 40 cm3 Ge(Li) detectors. Angular correlations were measured in the same configuration using an array of six 12.7 × 15.2 cm NaI(Tl) detectors mounted on the Chalk River LOTUS goniometer. Twelve new levels were observed in 43Sc and information on the spins, branching ratios, and gamma-ray multipole mixing ratios of these and several other excited states has been obtained. The results are compared with recent theoretical predictions of Johnstone. In particular, levels at 1931 and 2552 keV, 1830 keV and 1883 keV have been tentatively assigned as the 9/2+ and probable 11/2+ members of the kπ = 3/2+ band, the (fp)3, Jπ = 11/2− state, and the 9/2− member of the kπ = 3/2− band, respectively.



1973 ◽  
Vol 28 (10) ◽  
pp. 1603-1606
Author(s):  
E. Bashandy ◽  
M. S. El-Nesr ◽  
M. G. Mousa

The low energy levels of 197Au and 199Au have been investigated by means of a high resolution double focusing beta-ray spectrometer. The conversion electron ratios as well as the K-conversion coefficients of low-lying transitions were determined. The K-internal conversion coefficients of the 191 keV transition in 197Au indicated no EO contribution. The level structure of the lower excited states in 197Au and 199Au are discussed in terms of existing nuclear models.



1973 ◽  
Vol 28 (10) ◽  
pp. 1635-1641 ◽  
Author(s):  
A. G. de Pinho ◽  
M. Weksler

The X-ray spectra resulting from the internal conversion of electric quadrupole transitions following the alpha decay of Th230 and Ra226 were analysed with a Si (Li) spectrometer. From the knowledge of the Coster-Kronig and fluorescence yields, the internal conversion coefficients of the E2 transitions from the first excited states in Ra226 and Rn222 could be deduced. Results are in good agreement with theoretical values.



1968 ◽  
Vol 23 (7) ◽  
pp. 962-967
Author(s):  
E. Bashandy ◽  
N. Ibrahiem ◽  
G. El-Sayad

The internal conversion electron spectrum of transitions in the decay of (139 min) 165Dy to 165Ho has been studied using a high resolution iron-free double focusing β-ray spectrometer. In addition to γ rays previously reported eight new γ rays, mostly in the low energy region, have been observed. A decay scheme involving 17 excited levels is proposed for 165Ho. Multipolarity data, obtained from the measurements of absolute or ratios of conversion coefficients of γ rays, were utilized for assigning possible spins and parities to the levels of 165Ho. The experimental level structure is discussed in the light of nuclear models.



1980 ◽  
Vol 58 (2) ◽  
pp. 174-190 ◽  
Author(s):  
H. A. Mach ◽  
M. W. Johns ◽  
J. V. Thompson

High spin states of 96Tc populated by the (α,n) reaction using alpha beams from 13 to 27 MeV have been studied. Gamma-ray energies and intensities, gamma–gamma coincidence probabilities, gamma-ray angular distributions, and electron conversion coefficients were determined at 18 MeV. In addition, some results taken at 14 MeV are reported.The high spin structure observed in this work includes the following levels: 49.3(6+), 318.8(6+), 574.7(7+), 926.9(9+), 946.5(8+), 1062.1(8+), 1138.8(8+), 1447.2(9+), 1702.8(10+), 1861.6(9+), 1922.3(11+), 2147.5(11+), 2213.5(10(+)), 2317.2(12+), 2396.8(11(+)), 2599.0((13)+), 2642.4((14)+), and 3020.1(12(+)).These experiments also clarify and extend the information obtained by previous workers. In particular, evidence is adduced for low-lying states at 0.0(7+), 34.3(4+), 45.3(5+), 120.3(3−), 177.0(5+), 226.2(2−), 227.0(4+), and 254.3(3+).The work identifies many other states of intermediate energy.Attenuation coefficients for states in 96Tc are calculated using a theoretical model.



1965 ◽  
Vol 43 (3) ◽  
pp. 383-403 ◽  
Author(s):  
C. R. Cothern ◽  
R. D. Connor

Studies of the active deposit of actinium using a Siegbahn–Slatis beta-ray spectrometer and scintillation counters together with gamma–gamma coincidence work and gamma–gamma angular correlation measurements have led to the establishment of a new decay scheme for 211Pb and a level scheme for 211Bi involving five excited states.The gamma rays have the following energies and absolute intensities:[Formula: see text]Conversion-line studies yielded energy values for the transitions marked with an asterisk as 403.3 ± 0.5 and 426.5 ± 0.5 keV respectively. The K conversion coefficients of the 400- and 430-keV transitions have been determined as 0.091 ± 0.018 and 0.117 ± 0.024 respectively.Fermi analysis yields 1.378 MeV as the highest end-point energy of the beta partial spectra. The remaining end points and the component intensities as deduced from the level scheme are as follows:[Formula: see text]The much less accurate results from Fermi analysis of the complete active deposit are in reasonable agreement with these data.Angular correlation studies of the 430–400- and 706–400-keV gamma-ray cascades have yielded spins for the levels concerned: ground level (9/2), 400-keV level (7/2), 830-keV level (9/2), and 1 100-keV level (7/2). These spins are the only ones consistent with the experimental evidence and the theoretical arguments presented.



1972 ◽  
Vol 50 (22) ◽  
pp. 2741-2752 ◽  
Author(s):  
W. F. S. Poehlman ◽  
B. Singh ◽  
M. W. Johns

The decay of 3.2 min 89Kr has been investigated with small and large volume Ge(Li) detectors used singly and in a dual parameter coincidence arrangement. A total of 162 gamma rays are identified with the decay of this isotope, 120 of which are placed in a level scheme on the basis of gamma–gamma coincidence evidence and the energy differences between established levels. Levels at 220.9, 497.7, 577.3, 586.1, 930.7, 931.5, 997.6, 1195.5, 1324.6, 1530.1, 1533.6, 1694.1, 1822.1, 1998.9, 2160.5, 2401.5, 2598.5, 2867.2, 3099.7, 3329.9, 3363.1, 3372.1, 3534.1, 3719.3, 4145.1, 4217.4, 4340.9, and 4487.5 keV are well established by coincidence data and many energy sums. The levels proposed at 2783.4, 3429.7, 3456.6, 3978.4, 4058.4, and 4406.5 keV are less securely established. The most probable spins of the ground state and the first two excited states arc 3/2−. 5/2− and 1/2− respectively. Improved energies and intensities of the gamma rays from the decay of 15 min 89Rb have also been determined.



Sign in / Sign up

Export Citation Format

Share Document