A Bremmer series for radial wave equations

1977 ◽  
Vol 55 (24) ◽  
pp. 2150-2157 ◽  
Author(s):  
W. E. Couch ◽  
R. J. Torrence

The Bremmer series solution of the one-dimensional Helmholtz equation with variable velocity is generalized to obtain a similar series for the radial wave equation with a spherically symmetric velocity function. Since the leading term of Bremmer's series is the one-dimensional WKB approximation, we obtain an approximation for the radial wave equation analogous to the WKB approximation.

2018 ◽  
Vol 73 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Wei Feng ◽  
Songlin Zhao

AbstractIn this paper, we derive explicit group-invariant radial solutions to a class of wave equation via symmetry group method. The optimal systems of one-dimensional subalgebras for the corresponding radial wave equation are presented in terms of the known point symmetries. The reductions of the radial wave equation into second-order ordinary differential equations (ODEs) with respect to each symmetry in the optimal systems are shown. Then we solve the corresponding reduced ODEs explicitly in order to write out the group-invariant radial solutions for the wave equation. Finally, several analytical behaviours and smoothness of the resulting solutions are discussed.


1987 ◽  
Vol 39 (1) ◽  
pp. 100-122 ◽  
Author(s):  
D. B. Hinton ◽  
J. K. Shaw

In this paper we consider the one dimensional Dirac system1.1where αk(x) < 0, λ is a complex spectral parameter, and the remaining coefficients are suitably smooth and real valued. We regard (1.1) as regular at x = a but singular at x = b; in Section 4 we extend our result to problems having two singular endpoints.Equation (1.1) arises from the three dimensional Dirac equation with spherically symmetric potential, following a separation of variables. For the choices p(x) = k/x, αk(x) = 1,p2(x) = (z/x) + c, p1(x) = (z/x) – c, and appropriate values of the constants, (1.1) is the radial wave equation in relativistic quantum mechanics for a particle in a field of potential V = z/x [17]. Such an equation was studied by Kalf [11] in the context of limit point-limit circle criteria, which is one of the matters we consider here.


2021 ◽  
Vol 130 (2) ◽  
pp. 025104
Author(s):  
Misael Ruiz-Veloz ◽  
Geminiano Martínez-Ponce ◽  
Rafael I. Fernández-Ayala ◽  
Rigoberto Castro-Beltrán ◽  
Luis Polo-Parada ◽  
...  

Author(s):  
V. I. Korzyuk ◽  
J. V. Rudzko

In this article, we study the classical solution of the mixed problem in a quarter of a plane and a half-plane for a one-dimensional wave equation. On the bottom of the boundary, Cauchy conditions are specified, and the second of them has a discontinuity of the first kind at one point. Smooth boundary condition is set at the side boundary. The solution is built using the method of characteristics in an explicit analytical form. Uniqueness is proved and conditions are established under which a piecewise-smooth solution exists. The problem with linking conditions is considered.


Sign in / Sign up

Export Citation Format

Share Document