Double-beta decay and resonances in the nucleus

1978 ◽  
Vol 56 (4) ◽  
pp. 399-402 ◽  
Author(s):  
Charles Picciotto

Double-beta decay half-lives are calculated with the assumption that the emission of electron–neutrino pairs occurs via a Δ(1232) resonance in the nucleus. Numerical results are obtained with a quark model for the hadrons. By assuming that total rates are produced by a combination of neutrinoless and two-nuetrino modes, a lepton-nonconservation parameter η ~ 10−5 is obtained. Although the actual modes of decay and underlying mechanisms are undetermined, the present calculation can be used to obtain an upper limit for the probability admixture of resonances in the nucleus of a few percent.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
D. R. Artusa ◽  
F. T. Avignone ◽  
O. Azzolini ◽  
M. Balata ◽  
T. I. Banks ◽  
...  

Neutrinoless double-beta (0νββ) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for 0νββdecay of130Te using an array of 988 TeO2crystal bolometers operated at 10 mK. The detector will contain 206 kg of130Te and have an average energy resolution of 5 keV; the projected 0νββdecay half-life sensitivity after five years of livetime is 1.6 × 1026 y at 1σ(9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meV (50–130 meV). In this paper, we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.


1986 ◽  
Vol 266 (3-4) ◽  
pp. 669-686 ◽  
Author(s):  
Paul Langacker ◽  
B. Sathiapalan ◽  
Gary Steigman

2020 ◽  
Vol 9 ◽  
pp. 14
Author(s):  
A. Faessler

The standard model predicts a ratio of 2 for the number of atmospheric muon to electron neutrinos, while super-Kamiokande and others measure a much smaller value (1.30±0.02 for super-Kamiokande). Super-Kamiokande is also able to measure roughly the direction and the energy of the neutrinos. The zenith-angle dependence for the muon neutrinos suggests that the muon neutrinos oscillate into a third neutrino species, either into the r neutrino or a sterile neutrino. This finding is inves- tigated within the supersymmetric model. The neutrinos mix with the neutralinos, this meaning the wino, the bino and the two higgsinos. The 7 x 7 mass matrix is calculated on the tree level. One finds that the mass matrix has three linearly dependent rows, which means that two masses are zero. They are identified with the two lightest neutrino masses. The fit of the super-Kamiokande data to oscillations between three neutrinos yields, together with the result of supersymmetry, that the third neutrino mass lies between 2x10^-2 and 10^-1 eV. The two lightest neutrino masses are in supersymmetry on the tree level zero. The averaged electron neutrino mass which is the essential parameter in the neutrinoless double-beta decay is given by {m_ve) ~ m_v3 P_ze < 0.8 x10^-2 eV (95% confidence limit). It is derived from the super-Kamiokande data in this supersymmetric model to be two orders smaller than the best value (1 eV) from the neutrinoless double-beta decay.


1984 ◽  
Vol 138 (4) ◽  
pp. 301-303 ◽  
Author(s):  
A. Forster ◽  
H. Kwon ◽  
J.K. Markey ◽  
F. Boehm ◽  
H.E. Henrikson

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Sabin Stoica ◽  
Andrei Neacsu

The study of the neutrinoless double beta(0νββ)decay mode can provide us with important information on the neutrino properties, particularly on the electron neutrino absolute mass. In this work we revise the present constraints on the neutrino mass parameters derived from the0νββdecay analysis of the experimentally interesting nuclei. We use the latest results for the phase space factors (PSFs) and nuclear matrix elements (NMEs), as well as for the experimental lifetime limits. For the PSFs we use values computed with an improved method reported very recently. For the NMEs we use values chosen from the literature on a case-by-case basis, taking advantage of the consensus reached by the community on several nuclear ingredients used in their calculation. Thus, we try to restrict the range of spread of the NME values calculated with different methods and, hence, to reduce the uncertainty in deriving limits for the Majorana neutrino mass parameter. Our results may be useful to have an updated image on the present neutrino mass sensitivities associated with0νββmeasurements for different isotopes and to better estimate the range of values of the neutrino masses that can be explored in the future double beta decay (DBD) experiments.


2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Alexander Merle ◽  
Werner Rodejohann

We consider the possibility to gain information on the lepton mixing matrix element|Ue3|from an improved experimental limit on the effective neutrino mass governing neutrinoless double beta decay. We show that typically a lower limit on|Ue3|as a function of the smallest neutrino mass can be set. Furthermore, we give the values of the sum of neutrino masses and|Ue3|which are allowed and forbidden by an experimental upper limit on the effective mass. Alternative explanations for neutrinoless double beta decay, Dirac neutrinos or unexplained cosmological features would be required if future measurements showed that the values lie in the respective regions. Moreover, we show that a measurement of|Ue3|from neutrinoless double beta decay is very difficult due to the expected errors on the effective mass and the oscillation parameters.


2004 ◽  
Vol 13 (01) ◽  
pp. 367-370 ◽  
Author(s):  
MAREK GÓŹDŹ ◽  
WIESŁAW A. KAMIŃSKI

We present the possible influence on the half-life of neutrinoless double beta decay coming from the existence of n extra spatial dimensions. The half-life in question depends on the mass of the electron neutrino. We base our analysis on the Majorana neutrino mass mechanism in Arkani-Hamed–Dimopoulos–Dvali model.


1981 ◽  
Vol 47 (3) ◽  
pp. 153-156 ◽  
Author(s):  
W. C. Haxton ◽  
G. J. Stephenson ◽  
D. Strottman

Sign in / Sign up

Export Citation Format

Share Document