Double Beta Decay and the Majorana Mass of the Electron Neutrino

1981 ◽  
Vol 47 (3) ◽  
pp. 153-156 ◽  
Author(s):  
W. C. Haxton ◽  
G. J. Stephenson ◽  
D. Strottman
1978 ◽  
Vol 56 (4) ◽  
pp. 399-402 ◽  
Author(s):  
Charles Picciotto

Double-beta decay half-lives are calculated with the assumption that the emission of electron–neutrino pairs occurs via a Δ(1232) resonance in the nucleus. Numerical results are obtained with a quark model for the hadrons. By assuming that total rates are produced by a combination of neutrinoless and two-nuetrino modes, a lepton-nonconservation parameter η ~ 10−5 is obtained. Although the actual modes of decay and underlying mechanisms are undetermined, the present calculation can be used to obtain an upper limit for the probability admixture of resonances in the nucleus of a few percent.


2013 ◽  
Vol 53 (A) ◽  
pp. 782-785
Author(s):  
Claudia Tomei

The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of <sup>130</sup>Te, a rare nuclear process that, if observed, would demonstrate the Majorana nature of the neutrino and enable measurements of the effective Majorana mass. The CUORE setup consists of an array of 988 tellurium dioxide crystals, operated as bolometers, with a total mass of about 200 kg of <sup>130</sup>Te. The experiment is under construction at the Gran Sasso National Laboratory in Italy. As a first step towards CUORE, the first tower (CUORE-0) has been assembled and will soon be in operation.


1986 ◽  
Vol 266 (3-4) ◽  
pp. 669-686 ◽  
Author(s):  
Paul Langacker ◽  
B. Sathiapalan ◽  
Gary Steigman

2020 ◽  
Vol 9 ◽  
pp. 14
Author(s):  
A. Faessler

The standard model predicts a ratio of 2 for the number of atmospheric muon to electron neutrinos, while super-Kamiokande and others measure a much smaller value (1.30±0.02 for super-Kamiokande). Super-Kamiokande is also able to measure roughly the direction and the energy of the neutrinos. The zenith-angle dependence for the muon neutrinos suggests that the muon neutrinos oscillate into a third neutrino species, either into the r neutrino or a sterile neutrino. This finding is inves- tigated within the supersymmetric model. The neutrinos mix with the neutralinos, this meaning the wino, the bino and the two higgsinos. The 7 x 7 mass matrix is calculated on the tree level. One finds that the mass matrix has three linearly dependent rows, which means that two masses are zero. They are identified with the two lightest neutrino masses. The fit of the super-Kamiokande data to oscillations between three neutrinos yields, together with the result of supersymmetry, that the third neutrino mass lies between 2x10^-2 and 10^-1 eV. The two lightest neutrino masses are in supersymmetry on the tree level zero. The averaged electron neutrino mass which is the essential parameter in the neutrinoless double-beta decay is given by {m_ve) ~ m_v3 P_ze < 0.8 x10^-2 eV (95% confidence limit). It is derived from the super-Kamiokande data in this supersymmetric model to be two orders smaller than the best value (1 eV) from the neutrinoless double-beta decay.


2008 ◽  
Vol 23 (21) ◽  
pp. 3395-3398 ◽  
Author(s):  
MARISA PEDRETTI ◽  
M. BARUCCI ◽  
L. RISEGARI ◽  
G. VENTURA ◽  
S. DI DOMIZIO ◽  
...  

The main purpose of the Cryogenic Underground Observatory for Rare Events (CUORE) experiment is the search for the Neutrinoless Double Beta Decay (0νDBD) of 130 Te reaching a sensitivity on Majorana mass better than 50 meV. Cuoricino represents not only the first stage of CUORE, but also the most massive 0νDBD experiment presently running. Present results and future planning of these experiments will be described in the paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Sabin Stoica ◽  
Andrei Neacsu

The study of the neutrinoless double beta(0νββ)decay mode can provide us with important information on the neutrino properties, particularly on the electron neutrino absolute mass. In this work we revise the present constraints on the neutrino mass parameters derived from the0νββdecay analysis of the experimentally interesting nuclei. We use the latest results for the phase space factors (PSFs) and nuclear matrix elements (NMEs), as well as for the experimental lifetime limits. For the PSFs we use values computed with an improved method reported very recently. For the NMEs we use values chosen from the literature on a case-by-case basis, taking advantage of the consensus reached by the community on several nuclear ingredients used in their calculation. Thus, we try to restrict the range of spread of the NME values calculated with different methods and, hence, to reduce the uncertainty in deriving limits for the Majorana neutrino mass parameter. Our results may be useful to have an updated image on the present neutrino mass sensitivities associated with0νββmeasurements for different isotopes and to better estimate the range of values of the neutrino masses that can be explored in the future double beta decay (DBD) experiments.


1983 ◽  
Vol 9 (8) ◽  
pp. L169-L173 ◽  
Author(s):  
K Grotz ◽  
H V Klapdor ◽  
J Metzinger

2007 ◽  
Vol 22 (19) ◽  
pp. 1401-1410 ◽  
Author(s):  
S. DEV ◽  
SANJEEV KUMAR

The consequences of a texture zero at the ee entry of neutrino mass matrix in the flavor basis, which also implies a vanishing effective Majorana mass for neutrinoless double beta decay, have been studied for Majorana neutrinos. The neutrino parameter space under this condition has been constrained in the light of all available neutrino data including the CHOOZ bound on [Formula: see text].


2012 ◽  
Vol 27 (13) ◽  
pp. 1230015 ◽  
Author(s):  
S. M. BILENKY ◽  
C. GIUNTI

In this brief review we discuss the generation of Majorana neutrino masses through the seesaw mechanism, the theory of neutrinoless double-beta decay, the implications of neutrino oscillation data for the effective Majorana mass, taking into account the recent Daya Bay measurement of ϑ13, and the interpretation of the results of neutrinoless double-beta decay experiments.


Sign in / Sign up

Export Citation Format

Share Document