Gamow–Teller strength functions from scattering experiments

1987 ◽  
Vol 65 (6) ◽  
pp. 691-698 ◽  
Author(s):  
O. Häusser

We present here recent [Formula: see text] results from TRIUMF that are relevant to the determination of spin-flip isovector strength functions in nuclei. Distortion factors needed for the extraction of nuclear-structure information have been deduced from cross sections and analyzing powers in elastic scattering for several energies and targets. Nonrelativistic optical potentials obtained by folding effective nucleon (N)–nucleus interactions with nuclear densities are found to overpredict both elastic and reaction cross sections, whereas Dirac calculations that include Pauli blocking are in good agreement with the data. Spin observables (Snn and Ay) for the quasi-elastic region in 54Fe[Formula: see text] at 290 MeV provide some evidence for the reduction of the effective proton mass predicted in relativistic mean-field theories as a consequence of the attractive scalar field in the nuclear medium. The energy dependence of the effective N–nucleus interaction at small momentum transfers has been investigated using isoscalar and isovector 1+ states in 28Si as probe states. We find that the cross sections for the isovector transitions are in good agreement with predictions for the dominant Vστ part of the Franey–Love interaction. Gamow–Teller (GT) strength functions have been obtained in 24Mg and 54Fe from measurements of both cross sections and spin–flip probabilities Snn. The spin-flip cross sections σSnn are particularly useful in heavier nuclei to discriminate against a continuous background of ΔS = 0 excitations. In the (s, d) shell where full shell-model wave functions are available, the GT quenching factors [Formula: see text] are in good agreement with those from recent (p, n) and (n, p) experiments. We show that a state-by-state comparison of (p, p′) and (e, e′) results has the potential of identifying pionic current contributions in (e, e′). The GT quenching factors in 54Fe are smaller than in the (s, d) shell probably because of severely truncated shell-model wave functions, particularly those of the nuclear ground state.

2018 ◽  
Vol 194 ◽  
pp. 02009 ◽  
Author(s):  
Yu.S. Lutostansky

Three types of the charge-exchange isobaric resonances - giant Gamow-Teller (GTR), the analog (AR) and pygmy (PR) ones are investigated using the microscopic theory of finite Fermi systems and its approximated version. The calculated energies of GTR, AR and three PR’s are in good agreement with the experimental data. Calculated differences ΔEG-A=EGTR-EAR go to zero in heavier nuclei indicating the restoration of Wigner SU(4)-symmetry. The average deviation for ΔEG-A is 0.30 MeV for the 33 considered nuclei where experimental data are available. The comparison of calculations with experimental data on the energies of charge-exchange pygmy resonances gives the standard deviation δE<0:40 MeV. Strength functions for the 118Sn, 71Ga, 98Mo and 127I isotopes are calculated and the calculated resonance energies and amplitudes of the resonance peaks are close to the experimental values. Strong influence of the charge-exchange resonances on neutrino capturing cross sections is demonstrated.


2006 ◽  
Vol 73 (6) ◽  
Author(s):  
P. Navrátil ◽  
C. A. Bertulani ◽  
E. Caurier

1974 ◽  
Vol 49 (5) ◽  
pp. 443-446 ◽  
Author(s):  
L. Bimbot ◽  
I. Brissaud ◽  
Y. Le Bornec ◽  
B. Tatischeff ◽  
N. Willis ◽  
...  

1987 ◽  
Vol 65 (6) ◽  
pp. 574-577 ◽  
Author(s):  
J. Rapaport

The (p, n) reaction at intermediate energies has been used to measure differential cross sections in light nuclei to final states characterized with a ΔJπ = 1+ transfer (Gamow–Teller (GT) states). Experimental ft values for allowed beta-decay transitions in these nuclei are used to normalize the strength of the GT transitions in units of B(GT). This experimental GT strength is compared with predicted shell–model strength. For p-shell nuclei, the calculated excitation energies of the GT strength using Cohen and Kurath wave functions are in general agreement with the empirical GT distribution. Up to an excitation energy of about 20 MeV, the total experimental and calculated GT strengths are used to obtain the quenching factor, QF = Σ B(GT)exp/Σ B(GT)theor. It is found that QF decreases as the shell gets filled-up. The lowest value seems to occur for single-hole nuclei. This decrease may be explained by configuration mixing not specifically included in the calculations.


1972 ◽  
Vol 42 (2) ◽  
pp. 153-156 ◽  
Author(s):  
Duane Larson ◽  
S.M. Austin ◽  
B.H. Wildenthal

2005 ◽  
Vol 14 (06) ◽  
pp. 821-844 ◽  
Author(s):  
IGAL TALMI

Shell model calculations of nuclear energies and wave functions of nucleons outside closed shells interacting by effective two-body forces yield good agreement with much experimental data. Many attempts have been made to calculate nuclear energies ab initio, by starting from some form of an interaction between free nucleons. Recent results of such calculations claim to obtain reasonable agreement with measured energies. These results, however, are obtained for wave functions which are very complicated. It is difficult to see how such wave functions are consistent with independent nucleon motion, the very essence of the shell model. In some of those calculations, 3-body interactions play a very important role. This is puzzling since nuclear energies are accurately obtained in shell model calculations by using only effective two-body interactions. In this paper, some examples of simple shell model calculations are reviewed. They exhibit good agreement with experiment and the apparent absence of the need for effective 3-body interactions.


1993 ◽  
Vol 48 (6) ◽  
pp. 2673-2678 ◽  
Author(s):  
H. F. Wu ◽  
C. L. Song ◽  
H. Q. Song

Sign in / Sign up

Export Citation Format

Share Document